Alternative Predictive Modeling for Medicare Patient Cost

Abstract

As health care expenditures increase, patient cost
mitigation becomes more essential. Cost mitigation
programs such as Accountable Care Organizations
rely on the ability to accurately predict patient risk,
which is difficult because of highly-skewed data. We
examine Medicare public use data that includes de-
mographics, costs, and health conditions. We first
consider the Centers for Medicare and Medicaid Ser-
vices’ currently-used linear model and then imple-
ment more complex generalized linear and additive
models to predict patient costs in a future year based
on current year data. We find that the latter mod-
els more accurately predict the entire distribution of
Medicare patient costs and, thus, can improve the
existing cost mitigation frameworks.

Introduction

Medicare is a significant part of government spending, account-
ing for about 15% of U.S. government spending in 2017. As Medi-
care expenditure continues to strain federal spending, it becomes
more essential to find ways to mitigate health care costs. One
initiative involves patient interventions where a future high-cost
patient is identified ahead of time so a hospital or insurance or-
ganization can reach out and recommend appropriate preventative
care. Another cost mitigation technique involves Accountable Care
Organizations (ACQ’s) that are financially incentivized to miti-
oate care costs. The first initiative requires an effective predictive
model for high cost patients and the second one requires accurate
cost modeling across the entire distribution of patients since ACO’s
receive money based on their health cost savings adjusted for group
patient risk (expected expensiveness without cost-effective care).

The Centers for Medicare & Medicaid Services (CIMS) adminis-
ters Medicare and currently uses a hierarchical condition categories
(HCC’s) model for risk assessment. HCC’s are health condition
indicator variables that are extracted from more than 14,000 In-
ternational Classification of Diseases (ICD-10) categories. HCC’s
represent the most severe condition a patient has among a group of
similar conditions. CMS currently uses a linear regression model
to assess patient risk based on HCC codes and patient sex and age.
Patient risk scores are constructed based off of this model, which
are a predefined linear combination of demographic and HCC fac-
tors. This model is effective for assessing group risk, but it is not a
sufficient model for individual cost predictions, especially for high-
cost patients [1]. Therefore, we want to explore other models that
can better predict the entire distribution of Medicare patient costs.

Data

Quantitative Variable Summary Statistics

Predictor Mean qoa2s  qos  Qus Q095 Max
Age 72 60 72 80 89 99
Risk score 3.3 0.8 2.3 4.7 9.7 23.1
Sum of HCC's § 1 5 9 17 34
Inpatient costs 3,008 0 0 0 19,076 367,176
Outpatient costs 1,001 0 160 1,100 4,210 64,180
Carrier costs 1,825 280 1,180 2,570 6,000 28,920
Drug costs 178 0 40 280 740 3,180
2008 total cost 6,013 620 2,060 5,390 26,728 367,176
2009 total cost 6,273 950 2,890 6,770 24,581 201,406

q., represents the o™ quantile of the variable. Cost categories are
for 2008 cost data. All cost are reported in US dollars.

We use Medicare public use file data from 2008 and 2009 to train
and evaluate our models. This data includes ICD-10 condition
categories, patient demographics (sex, age, race, and state), and
patient costs by category (inpatient, outpatient, carrier, and drug).
Our cleaning process first involved creating HCC’s from ICD-10
codes and then constructing patient risk scores according to the
CMS HCC model formula. This allowed us to test the currently-
used CMS linear model where a patient’s risk score is the only
predictor for the next year’s cost. Most of our variables are highly
skewed due to the fact that the majority of patients are low risk
except for a small group of high cost patients.
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Figure 1: Although untransformed cost data is highly skewed,
there is a linear relationship between a patients’ current year costs
and next year costs on the logarithmic scale.
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Methods

All of our models use covariates based on 2008 data to predict 2009 individual patient costs. The
CMS linear model is the simplest, which uses only risk score as a covariate. Our other models use risk
scores, sum of HCC’s, inpatient costs, outpatient costs, carrier costs, and drug costs as covariates to
predict total 2009 patient costs. Using additional cost predictor variables can significantly improve
model accuracy as shown by Figure 1 and Duncan et al. [2]. We test a variety of frameworks
including generalize linear (GLM), generalized additive (GAM), and random forest (RF) models.
GLM and GAM models can be written in the following form where Y; is the total 2009 cost for the
i patient and z,,; is the m'™ predictor variable for the i* patient.

GLM: g(ED/ZD :504—51*33172—1—52*%‘2’@4——|—5m>l<ilfm,z (1)
GAM:  g(E[Y]]) = Bo+ filz1i) + fol@20) + o + frn(@ims)

Both GLM’s and GAM’s express some (link) function of the expected 2009 cost as a linear com-
bination of functions of the predictor variables. The key difference between GLM’s and GAM’s is
that GLM’s only uses linear functions of predictor variables where GAM’s can use any arbitrary
nonlinear function of predictor variables. In the R package mgcv, these arbitrary predictor functions
are fit to the data using penalized regression splines (Figure 2).
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Figure 2: This is an example of a smooth predictor function used in one of our general additive
models. This function is nonlinear and would be difficult to parameterize in a generalized linear model
but can be automatically fit using a GAM.

Random forest models are nonparametric models that make predictions based on the average
predictions of many simple, moderately uncorrelated regression trees. These models are advocated
in previous research by Duncan et al. [2] from an accuracy standpoint. However, they can be
difficult to interpret.

Our generalized additive models also use a 2-part framework which has been advocated in previous
healthcare cost research by Frees et al. [3]. The first stage in our 2-part framework uses logistic
regression to separate zero and nonzero cost patients. The second stage is used to make conditional
cost predictions for predicted nonzero cost patients.

We evaluate all models using a variety of error metrics as defined in Equation 2 where predicted
costs, Y are compared to actual costs, Y. Root mean square error (RMSE) is a commonly
used metric, but in the case of health care data mean absolute error (MAE) and mean absolute
proportional error (MAPE) can be more useful since they are less sensitive to outliers (high cost
patients) in the data. Quantile-truncated metrics do not account for prediction errors for very high
cost patients and by design are robust to outliers.
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All computational analysis was performed in RStudio using the following packages: dplyr,
Hmisc, mgcv, ranger, ROCR, and tidyverse.

Results

We use 10-fold cross-validation to assess each model’s performance across all error metrics. For
all 2-part models, we also check the accuracy of the first stage logistic model, which has an area
under the receiver operating curve of 99%. This means the first stage model is extremely accurate
for predicting nonzero cost patients. It is imperative that the 2-part models have an accurate first
stage model as all conditional coast predictions are contingent on the first stage predictions. We
confirm that this is indeed the case due to a natural separability in the data between zero and
nonzero cost patients.

10-Fold Cross-Validation

Model R RMSE qRMSE, MAE qMAE, MAPE
CMS Linear Model 0.23 9,187.14 4.883.49  4823.37  3,500.03 3.28
(0.02)  (304.26) (91.58) (90.11) (66.75) (0.19)
Full Linear Model 0.29 §8,839.77 4.673.08  4,552.23  3,290.28 2.34
(0.02)  (315.14) (80.93) (72.19) (49.10) (0.09)
Tweedie Model 0.27  8,938.99 4.730.10  4,607.58  3.322.60 1.97
(0.02)  (337.57) (148.88)  (106.68) (72.43) (0.09)
2-Part Linear GAM 0.29 8,806.76 4.624.28  4,510.73  3,240.05 2.05
(0.01)  (402.00) (109.83)  (116.15) (54.28) (0.10)
2-Part Gamma GAM 0.26 8,997.26 4.768.15  4,612.88  3,323.96 2.1
(0.03)  (360.15) (145.88)  (116.24) (65.38) (0.11)
2-Part Lognorm GAM 0.24 9,133.36 4167.11  3,875.35  2,407.55 0.97
(0.02)  (358.93) (132.81)  (104.08) (54.23) (0.03)
2-Part Random Forest 0.29 8,799.57 4.633.97  4,513.05  3.,247.79 1.93
(0.02) (277.63) (67.18) (69.34) (47.38) (0.11)

Standard deviation of metrics are shown in parenthesis.

Quantile-truncated error metrics use

a = 0.05. GAM indicates that a model is a generalized additive model. "CMS Linear' denotes
the linear risk score model used by CMS. The Tweedie and Gamma models use non-gaussian link

functions.

A quick comparison of the error metrics shows that the 2-part lognormal generalized additive
model performs best on average. This model uses log 2009 expenditures as the response variables
and log-transformed predictor variables. We closely examine the predictions of this model compared
to the currently implemented CMS linear model in Figure 3.
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Figure 3: The decile-decile plots compare predicted patient cost deciles
to actual cost deciles. ldeally all mass should lie along the diagonal line.
The 2-part lognormal GAM performs is significantly more accurate than the

CMS linear model.

Discussion

Based on our analysis, we propose the 2-part lognormal general addi-
tive model as the optimal model. There are likely more accurate models
among the plethora of complex modeling techniques available today, but
these models tend to lose interpretability as their complexity and accu-
racy increase. A 2-part model has a much more interpretable context
in terms of separating zero and nonzero cost patients. The generalized
additive framework also allows better fitting of nonlinear relationships in
the data. Parameterizing a model may improve interpretability, but it as-
sumes we understand more knowledge about the underlying process than
we truly have. Healthcare costs are the results of complex processes, and
by utilizing a semi-parametric method such as general additive models,
we avolid assuming too much about the underlying expenditure process.
We only assume there is some relationship between each predictor in the
model, which is fitted based on the data itself, not our assumptions. Due
to the 2-part lognormal GAM’s improved accuracy, it has the potential
to improve Medicare patient risk assessment which can in turn improve
healthcare cost mitigation.
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