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Abstract

The purpose of this study was to organize auto insurance claim adjuster notes into useful data for actuarial analyses and find useful variables that

will improve the structured model to predict the severity of bodily injury claims. After processing adjuster notes, Latent Dirichlet Allocation (LDA)

and Non-Negative Matrix Factorization (NMF) were used to find the structure and topics of the given notes. Then, these notes were used to

predict the severity of such claims using a variety of different predictive models. After comparing each model, LDA demonstrated better topics
while Random Forest had better model performance.

Topic Modling

This case study will focus on automobile insurance.
Two key components of automobile insurance are the
property damage liability and bodily injury liability.
Compared to the property damage liability, bodily
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