1. Prove that
\[\int_0^t B_s^2 \, dB_s = \frac{1}{3} B_t^3 - \int_0^t B_s \, ds. \]

2. Let \(B \) be standard Brownian motion. Prove or disprove that \(U \) is a martingale, where
\[U_t := B_t^2 - t. \]
Is the family \(\{ U_t, \ t \geq 0 \} \) uniformly integrable?

3. Let \(Y \) be a real valued RV on some probability space and assume that \(E|Y| < \infty \). Let \(\{ F_t \} \) be a filtration. Prove or disprove that \(V \) is a martingale (with respect to \(\{ F_t \} \)), where
\[V_t := E(Y \mid F_t), \ t \geq 0. \]

4. A S.P. is called \textit{continuous in mean square} if
\[\lim_{s \to t} E[(B_s - B_t)^2] = 0, \ \forall t \geq 0. \]
Is standard Brownian motion continuous in mean square? Why?

GOOD LUCK!