

Improving the Prediction of Readmissions **Amongst Medicare Patients in a California Hospital** Nhan Huynh, Dylan Robbins-Kelley, Holly Fallah Faculty Advisors: Ian Duncan, Janet Duncan, Wade Herndon Dept. of Statistics and Applied Probability, University of California Santa Barbara

Introduction	Methodology	Results		
Purpose and Motivation	Logistic Regression	Models		
Centers for Medicare and Medicaid Services	A rearession model where the data set has a	Three models were created:		

(CMS) reduced Medicare payments for hospitals with excess readmissions (within 30 days of discharge) for following health conditions:

- Heart Attack, Heart Failure, Pneumonia, Hip/Knee Replacement, Chronic **Obstructive Pulmonary Disease.**
- Readmissions can lead to longer stays, and put patients at additional risk of hospitalacquired infections and complications. **Development of LACE**
- Currently the LACE index is a widely used readmission model in the United States, due to its simplicity and moderate predictive
 - power.
- LACE scores every patient on the risk of readmission upon discharge based on the following parameters: Length of stay

- binary response or a multinomial response and several predictors
- We are interested in predicting the probability a patient is readmitted to the hospitals within 30 days after discharge based on characteristics such as:
 - age, gender, length of stay during admission, diagnoses, admission from emergency department, number of emergency visits, etc...
- Logistic regression links the binary outcomes of readmission status with a combination of the linear predictors.
- Let p=probability the patient is readmitted within 30 days after discharge Let b₀=intercept Let b_p=coefficient of variable Let X_p =variable

- LACE model
- General Model
- Age 65+ model with CMS penalty conditions

Criteria	LACE	General Model	Age 65+ and Penalty Conditions Model	
Cutoff Values	HIGH	.086	.124	
Sensitivity	.43	.7	.66	
Specificity	.88	.7	.66	
PPV	.17	.15	.21	
AUC N/A		.78	.71	

Table to compare predicted and actual readmissions using the age 65+ model:

	Decile	Number in decile	Mean Prediction within Quantile	Actual Readmissions	Predicted Readmission
15.0	0-10	666	0.0092	6.0	6.1
	10-20	666	0.0114	4.0	7.6
	20-30	666	0.0185	15.0	12.3
	30-40	666	0.0255	15.0	17.0
	40-50	666	0.0364	22.0	24.2
	50-60	666	0.0568	48.0	37.8
	60-70	666	0.0821	60.0	54.7
	70-80	666	0.1032	61.0	68.7
	80-90	666	0.1366	98.0	91.0
	90-100	666	0.2319	157.0	154.4
100	Sum	6,660		486.0	473.9

- Acuity of admission
- Comorbidity
- Emergency department visits in the previous 6 months.
- LACE scores range from 0-19
 - Low Risk 0-4
 - Moderate Risk 5-9
 - High Risk 10-19

Data Summary

Data aquired from single hospital consisting ** of 76,538 patients in five years

N=76538		Year 2010 Year 20	Year 2011	Year 2012	Year 2013	Year 2014
Variable	Factors	(n=15516)	(n=15072)	(n=15566)	(n=15176)	(n=14937)
	White	.71	.70	.71	.71	0.4
Race	Hispanic	.23	.24	.23	.24	.94
	Asian	.02	.02	.02	.02	.02
	Black	.02	.02	.02	.02	.02
	Other	.02	.02	.02	.02	.02
	Medical	.48	.48	.51	.51	.53
DRG	Surgical	.46	.46	.43	.42	.40
	Ungroup	.06	.06	.06	.07	.07
	Emergency	.40	.40	.42	.46	.45
Admitted from	Pre Admit	.40	.38	.37	.34	.33
Туре	Observation	.14	.15	.15	.15	.16
	Other	.06	.07	.06	.05	.06
Readmission	Yes	.072	.074	.075	.068	.064
Readinission	No	.928	.926	.925	.932	.936
	Min	15	15	15	15	15
Age	Mean	57.89	57.75	57.74	57.92	57.84
	Max	104	110	111	112	106
	Min	1	1	1	1	1
LACE	Mean	5.6	5.78	5.65	6.01	6.30
	Max	19	19	17	19	19
	Min	.14	.14	.14	.14	.14
CDPS	Mean	3.008	3.095	3.207	3.359	3.538
	Max	29	22.14	20.44	29.850	25.870
	Min	0	0	0	0	0
	Median	3	3	3	3	3
Length of Stay	Mean	3.820	4.154	4.309	3.977	4.029
	Max	79	239	143	98	122

 $\hat{p} = \frac{\exp(b_0 + b_1X_1 + b_2X_2 + \dots + b_pX_p)}{1 + \exp(b_0 + b_1X_1 + b_2X_2 + \dots + b_pX_p)}$

Validation

- Logistic regression is built on 80% of the data set. The remaining 20% of the data set is used for internal validation.
- A confusion matrix was examined to compare the sensitivity (true positive rate), specificity (false negative rate), positive predicted value, and c-statistic.
- A new cutoff value was created to compromise the tradeoff between the true positive rate and false negative rate.

Conclusions

- Sensitivity values in logistic regression models are higher than the value in the LACE model.
- Specificity is higher in LACE, however the slightly lower specificity values in the regression models are worth the compensation to gain sensitivity.
- This indicates an improvement in predictive power of regression models compared to the LACE model.
- When comparing both regression models, ** the general model is preferred because of its higher sensitivity, specificity, and AUC vales compares to the age and penalty specific model.

1. Van Walraven C, Dhalla IA, Bell C, et al. Derivation and Validation of an Index to Predict Early Death or Unplanned Readmission After Discharge From Hospital to the Community. CMAJ 2010; 182: 551-557.

2. Spiva L, Hand M, VanBrackle L, et al. Validation of a Predictive Model to Identify Patients at High Risk for Hospital Readmission. JHQ 2014; 00(0):

3. S, Farooq F, van Esbroeck A, et al. Predicting Readmission Risk with Institution-Specific Prediction Models. Artificial Intelligence in Medicine 2015; 65(2): 89-96.

4. Billings J, Dixon J, Mijanovich T, et al. Case finding for patients at risk of readmission to hospital: development of algorithm to identify high risk patients. BMJ 2006, doi:10.1136/bmj.38870.657917.AE.