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Based on a paper written with Prof. Ludkovski
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The Challenge
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Completing the Square: A Fundamental
Process

Upper Left Triangle: Training Data
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Completing the Square: A Fundamental
Process

Lower Right Triangle: Extrapolation
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Completing the Square: A Fundamental
Process

Completed Square
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Key Modeling Goals

- Determine a reserve for unpaid claims
- (Sum of Column 10 completed square) - (paid claims)
- Distribution of reserves
- For allocating risk capital
- Expected value of successive step-ahead paid claims
- For cash flow projections & asset / liability management
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Current Modeling Landscape

-+ LDF Models

- Ubiquitous, most popular, straightforward

- Chain Ladder and variants

- Good at producing expected claims

- Underestimates uncertainty around claims
+ILR models

- Overdispersed Poisson Model

- Can be done using standard GLM software
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Introduction to Gaussian Processes
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What is a Gaussian Process

Multivariate Normal distribution:
- Mean vector, covariance matrix
»+ Gaussian Process:
- Finite sample is Multivariate Normal

- Mean function, covariance function
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Modeling Thought Process with GPs

Data with inputs that are "near" to one another, will have outputs that are
"near".
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A Toy Example

=outputs

y

X = inputs
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Model Specification

Ground Truth

- x inputs, Y output

- True Y (xz) ~ N(u(x),o(x))

- p(z) = 0.1(z — 1)* + sin(2x)
co(z) = (1)1 +(.25). 1555
Model

- ¢ = vector, ' = i" element of z
© f(z) ~ GP(m(z),C(z,2'))
+ Modeled Y (x) = f(x) + €, where e ~ N (0, 0)
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A Toy Example: "Nearness" defined in
covariance function

C = Covariance Matrix
C;; = i,j"element of C
Ciy = 1P e &I

© When z' is close to 27, yi will have a high covariance with yj.
© When z° is far from 2/, yi will have a low covariance with yj.
- (is called a Squared Exponential Kernel

* mis the amplitude

* pisthelengthscale
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An Advantage of GPs

* If the prior f(z) ~ GP(m(z),C(z,x)), then

* Posterior fi(zs)|D ~ GP(m * (x4),C * (x4, x4)), where closed form
expressions can be obtained for m, and C,
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A Toy Example: Choose a set of Parameters
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A Toy Example: One Training Sample

- Blue line: True mean; Red Dots: Samples
- Dotted Orange: Posterior GP; Grey Band: 95% credible interval
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A Toy Example: 40 Training Samples
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A Toy Example: 40 Training Sample, with
shorter lengthscale

Use p? = 0.5 instead of p? = 1.5
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The Basic GP Setup
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GPs with Loss Reserves

Each "cell" in a triangle is treated as a data point:

- ' = (AY*, DLY)

- L' = incremental loss ratio

- L' = f(2') + €, where ¢ = DL

+ Prior f(z') ~ GP(m(z"),C(z,z))
'+ €g ~ N(0,07)
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The Data We Analyzed

+ NAIC Schedule P triangles (Meyers & Shi):
- We use paid claims only

+ Completed squares from 1998-2006

+ 10 accident years, 10 development years

+ 200 companies across 6 business lines

+ comauto (84), medmal (12), ppauto (96), prodliab (87), other (13), wkcomp
(57)

- Training data (upper left triangle):
- 55ILR cells

+ Test data (lower right triangle):
- 45 LR cells
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Distribution of ILRs
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Complexity in the Data

+ ILRs are generally declining monotonically by Development Lag (with some
exceptions)

+ |ILRs/paid claims are almost always positive

* Intrinsic uncertainty (f(«)) declines by Development Lag

" Extrinsic uncertainty (o) declines by Development Lag

+Uncertainty is skewed to the right
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The GP Models

25/51



Choice of Software

+ Used Stan as our probabilistic programming framework
+ Full Bayesian implementation
+ Uses HMC as its core algorithm
+ Solid, tested, strong online community
+ Compared to DiceKriging package, but Stan offers far more flexibility
- Tried Greta:
- Based on Tensorflow Probability.
- Utilizes GPUs, a significant advantage
- Still too early in production, so it was abandoned
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Compound Kernels

+ GPs can be used to do Bayesian linear regression by using a special kernel
- With Bayesian Regression we specify a mean function:
- Correlation among the data points is an byproduct of the model
- With GP regression, we can specify a kernel
- mean is a byproduct of the model e.g.
- Bayesian Linear Regression:

- Y(z)=ax+0
- a~ N(0,02)
- b~ N(0,07)
- This is equivalent to:
- Y(z) ~ GP(0,0,.(z.2') + 0})
- Called "Linear Kernel"

- Kernels can be combined to form a compound kernel
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"Plain" ILR GP Model

L(z) = Incremental Loss Ratio
L(z) = f(z) + ¢,
f(z) ~ GP(m(z),C(z,))
m(z) =0
C(x,x) = SquareExp(AY,DL)+
Linear(AY )+
Linear(log(DL))
e, ~ N(0,0,)
Oq 2 Ogt1

- Both input and output data were standardized
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Source of Uncertainty: The Three Sources

1. Extrinsic Uncertainty:

- €,
2. Intrinsic Uncertainty:

* Uncertainty in f(«), modeled as a Gaussian random field
3. Correlation Uncertainty (model misspecification):

 Uncertainty in the hyperparameters (p, 1, etc.)

Overall predictive uncertainty no longer under-estimated

29/51



Sample fit of "Plain" ILR GP Model
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Problems with Plain ILR GP

- Large negative paid losses

- Increasing uncertainty for large Development Lags, but we know from
data that there is decreasing uncertainty at the long Development Lags.

- Mean prediction is not declining asymptotically to zero
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Advanced Models
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Enhancement 1: Hurdle Model

Lyurdie(z) = maz(0, L(x))

+ Mixture of a truncated normal and a point mass at zero.

* The respective likelihood Lpyrgie ()| f() during the inference step is a
mixture of:

- a Gaussian likelihood if L(x) > 0 and

- a Bernoulli likelihood:

P(Lpyraie(z) = 0| f(z)) = ®(0; mean = f(z),var = o2 (x)), called the
hurdle probability.
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Hurdle Probabilities
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Enhancement 2: Virtual Datapoints

- At Development Lag g = 11,we add virtual observations of zero ILRs
- Equivalent to telling model that losses have fully developed by DL=10
- This partly turns an extrapolation model into an interpolation model

- (In practice, an actuary can use non-zero virtual observations for longer
tailed business lines)
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Sample fit of Hurdle+Virutal ILR GP Model
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Lengthscales under the GP Model
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Variance under ILR GP Model
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Comparison of Plain vs. Hurdle+Virutal GP

Simulations from the Plain GP Model
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Comparison of Plain vs. Hurdle+Virutal GP

Simulations from the Hurdle + Virtual Data GP Model
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Comparison of Chain Ladder vs. Plain vs.
Hurdle+Virutal GP
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Performance Metrics

- Best estimate reserves: RMSE of ultimate loss ratio
» Cash flow projections: RMSE of step-ahead cumulative loss ratio
- Risk Capital: Coverage Ratio
- Sensitivity Analysis:
- CRPS (Continuous Ranked Probability Score)
- NLPD (negative log probability density)
- Kolmogorov-Smirnov Test
- Graphical Tests (distribution of percentile ranks)
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Sample Test: WKCOMP RMSE and Coverage
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Sample Test: WKCOMP Distribution of
Percentiles
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Sample Test: WKCOMP Kolmogorov Smirnov
Test
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Multiple Company Models

- GP Model can be extended to handle multiple companies within the same
model

- Companies can "borrow strength" from other companies
- Find high correlation in ILRs among companies

- Difficult (computationally) to model many companies, but a reasonable set
of comparable companies can be added into a single model
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The Multiple Company Model
Cmulti(xi,mj) _ Csingle (wi’wj). e_Pco-(l_(Si,j), where

5. =30 Company' # Company’
" 1, otherwise
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The Advanced Multiple Company Model
C/multi (Cl?i, .’L‘j) — ('5ingle (wz” Cl?j). e—(pco,i+pco,j).(1—5i,j)’ where

5. — 0, Company® # Company’
h 1, otherwise
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Multiple Company Model Scores
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Overall Model Comparisons

- RMSE under Mack CL beat Hurdle+Virtual model 4 out 6 business lines

+ Coverage under Hurdle+Virtual model beat CL 5 out 6 business lines
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Summary

We introduced a framework for modeling complexities of paid loss
development
+ Captures extrinsic, intrinsic and correlation risk
+ Comply with structural data constraints and complexities
+ Cohently project full multi-period trajectory of losses
Borrow strength from other company data in a multi-company model
Provided a comprehensive means of testing model fit

Overall GPs can provide a material improvement in understanding the risk
profile of liabilities
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