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Efficient valuation of large variable annuity portfolios
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What is a variable annuity?
A variable annuity is a retirement product, offered by an insurance
company, that gives you the option to select from a variety of investment
funds and then pays you retirement income, the amount of which will
depend on the investment performance of funds you choose.
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Variable annuities come with guarantees

GMxB

GMDB GMLB

GMWB GMAB GMMB GMIB
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Insurance companies have to make guarantee payments
under bad market conditions

Example (An immediate variable annuity with GMWB)

Total investment and initial benefits base: $100,000

Maximum annual withdrawal: $8,000

Policy
Year

INV
Return

Fund
Before
WD

Annual
WD

Fund
After
WD

Remaining
Benefit

Guarantee
CF

1 -10% 90,000 8,000 82,000 92,000 0
2 10% 90,200 8,000 82,200 84,000 0
3 -30% 57,540 8,000 49,540 76,000 0
4 -30% 34,678 8,000 26,678 68,000 0
5 -10% 24,010 8,000 16,010 60,000 0
6 -10% 14,409 8,000 6,409 52,000 0
7 10% 7,050 8,000 0 44,000 950
8 r 0 8,000 0 36,000 8,000
...

...
...

...
...

...
...

12 r 0 8,000 0 4,000 8,000
13 r 0 4,000 0 0 4,000
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Dynamic hedging

Dynamic hedging is a popular approach to mitigate the financial risk, but

Dynamic hedging requires calculating the dollar Deltas of a portfolio
of variable annuity policies within a short time interval.

The value of the guarantees cannot be determined by closed-form
formula.

The Monte Carlo simulation model is time-consuming.

There is also the additional computational issue related to reflect the
effect of dynamic hedging in (quarterly) financial reporting.
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Use of Monte Carlo method

Using the Monte Carlo method to value large variable annuity portfolios is
time-consuming:

Example (Valuing a portfolio of 100,000 policies)

1,000 risk neutral scenarios

360 monthly time steps

100, 000× 1, 000× 360 = 3.6× 1010!

3.6× 1010 projections

200, 000 projections/second
= 50 hours!
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Metamodeling
A metamodel, also a surrogate model, is a model of another model.
Metamodeling has been applied to address the computational
problems arising from valuation of variable annuity portfolios: a
number of work published by co-author G. Gan.
It involves four steps:

Select representative VA policies

Value representative VA policies

Build a metamodel

Use the metamodel
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Selecting representative policies

An important step in the metamodeling process is the selection of
representative policies. Gan and Valdez (2016) compared five different
experimental design methods for the GB2 regression model:

Random sampling

Low-discrepancy sequence

Data clustering (hierarchical k-means)

Latin hypercube sampling

Conditional Latin hypercube sampling
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Some metamodels proposed/examined

We have studied and proposed some metamodels for the valuation of large
VA portfolios:

Ordinary kriging

Universal kriging

GB2 regression model

Rank-order kriging (quantile kriging)

Tree-based models - joint work with Z. Quan

Kriging has its origins in geostatistics or spatial analysis. It is in some sense
an interpolation method that is closely related to the idea of regression.
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A portfolio of synthetic variable annuity policies

Feature Value

Policyholder birth date [1/1/1950, 1/1/1980]
Issue date [1/1/2000, 1/1/2014]
Valuation date 1/1/2014
Maturity [15, 30] years
Account value [50000, 500000]
Female percent 40%
Product type DBRP, DBRU, BBSU, etc.
Fund fee 30, 50, 60, 80, 10, 38, 45, 55, 57, 46bps

for Funds 1 to 10, respectively
Base fee 200 bps
Rider fee depends on product type
Number of funds invested [1, 10]
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VA product types in the synthetic portfolio

Product Description Rider Fee

DBRP GMDB with return of premium 0.25%
DBRU GMDB with annual roll-up 0.35%
DBSU GMDB with annual ratchet 0.35%
ABRP GMAB with return of premium 0.50%
ABRU GMAB with annual roll-up 0.60%
ABSU GMAB with annual ratchet 0.60%
IBRP GMIB with return of premium 0.60%
IBRU GMIB with annual roll-up 0.70%
IBSU GMIB with annual ratchet 0.70%
MBRP GMMB with return of premium 0.50%
MBRU GMMB with annual roll-up 0.60%
MBSU GMMB with annual ratchet 0.60%
WBRP GMWB with return of premium 0.65%
WBRU GMWB with annual roll-up 0.75%
WBSU GMWB with annual ratchet 0.75%
DBAB GMDB + GMAB with annual ratchet 0.75%
DBIB GMDB + GMIB with annual ratchet 0.85%
DBMB GMDB + GMMB with annual ratchet 0.75%
DBWB GMDB + GMWB with annual ratchet 0.90%

Gan/Valdez (U. of Connecticut) UCSB InsurTech Summit 2019 12 / 31



VA provides guaranteed appreciation of the benefits base
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Fair market values of the guarantees

Fair market values
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Training set - summary statistics - continuous variables

Response
variables Description Min. 1st Q Mean Median 3rd Q Max.

gmwbBalance GMWB balance 0 0 27.8 0 0 422.26
gbAmt Guaranteed benefit amount 51.88 183.98 323.29 306.89 437.36 920.62
FundValue1 Account value of the 1st fund 0 0 32.02 12.62 46.76 629.89
FundValue2 Account value of the 2nd fund 0 0 36.54 16.08 56.31 571.59
FundValue3 Account value of the 3rd fund 0 0 26.78 11.81 36.64 458.78
FundValue4 Account value of the 4th fund 0 0 25.8 10.48 38.29 539.36
FundValue5 Account value of the 5th fund 0 0 22.29 10.54 34.71 425.92
FundValue6 Account value of the 6th fund 0 0 37.15 19.64 53.96 654.64
FundValue7 Account value of the 7th fund 0 0 28.78 12.88 42.56 546.89
FundValue8 Account value of the 8th fund 0 0 31.27 15.59 46.24 529.57
FundValue9 Account value of the 9th fund 0 0 31.93 13.9 45.17 599.44
FundValue10 Account value of the 10th fund 0 0 32.6 13.86 45.09 510.43
age Age of the policyholder 34.52 42.86 50.29 51.36 57.21 64.46
ttm Time to maturity in years 0.75 10.09 14.61 14.6 19.12 27.52

Gan/Valdez (U. of Connecticut) UCSB InsurTech Summit 2019 15 / 31



Tree-based models

Quan, Gan and Valdez (2019) compared the prediction performance of
various tree-based models:

Classification and Regression Trees (CART)

pruned by introducing penalty

Ensemble methods: aggregate several regression trees to improve
prediction accuracy

Bagging and random forests
Gradient boosting

Unbiased recursive partitioning:

Conditional inference trees
Conditional random forests
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Unbiased recursive partitioning

CART algorithms employ what is called recursive binary partitioning,
which uses greedy search causing some drawbacks:

Overfitting

Use a pruning process by applying cross-validation

Bias in variable selection

Especially true when the explanatory variables present many possible
splits or have missing values
Hothorn, et al. (2006) introduced conditional inference trees based on
a partitioning of a statistic that is used to measure the association
between the response and the explanatory variables.
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A regression tree
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A conditional inference tree
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Prediction accuracy of various models

Model Gini R2 CCC ME PE MSE MAE

Regression tree (CART) 0.786 0.845 0.917 1.678 -0.025 3278.578 31.421
Bagged trees 0.842 0.918 0.954 2.213 -0.033 1720.725 20.334
Gradient boosting 0.836 0.942 0.969 1.311 -0.019 1214.899 19.341
Conditional inference trees 0.824 0.869 0.930 0.905 -0.013 2754.853 26.536
Conditional random forests 0.836 0.892 0.940 1.596 -0.024 2273.385 23.219

Ordinary Kriging 0.815 0.857 0.912 -0.812 0.012 3006.192 27.429
GB2 0.827 0.879 0.930 0.106 -0.002 2554.246 27.772
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A heatmap of model performance
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Computational efficiency

Model Computation Time

Regression tree (CART) 0.13 secs
Bagged trees 2.70 secs
Gradient boosting 4.69 secs
Conditional inference trees 0.25 secs
Conditional random forests 1214.72 secs

Ordinary Kriging 277.49 secs
GB2 23.44 secs
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Variable importance for tree-based models
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Variable importance for tree-based models
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Lift curve plots - performance visualization
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Prediction and observed fair market values
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Concluding remarks

We explore tree-based models and their extensions in developing
metamodels for predicting fair market values. Besides computational
efficiency and predictive accuracy, they have several advantages as an
alternative predictive tool:

Tree-based models are considered as nonparametric models that do not
require distribution assumptions.

Tree-based models can perform variable selection by assessing the relative
importance.

Tree-based models, especially with single smaller-sized trees, are
straightforward to interpret by a visualization of the tree structure. This
visualization was illustrated both in the case of regression tree and
conditional inference tree.

When compared to other metamodels for prediction purposes, tree-based
models require less data preparation as they preserve the original scale to be
more interpretable.

Gan/Valdez (U. of Connecticut) UCSB InsurTech Summit 2019 27 / 31



Metamodeling book
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Appendix: Validation measures

Validation measure Description Interpretation

Gini Index Gini = 1− 2

N − 1

(
N −

∑N
i=1 iỹi∑N
i=1 ỹi

)
Higher Gini is better.

where ỹ is the corresponding to y after
ranking the corresponding predicted values ŷ.

Coefficient of Determination R2 = 1−
∑N

i=1(ŷi − yi)2∑N
i=1

(
yi −

1

n

∑n
i=1 yi

)2 Higher R2 is better.

where ŷ is predicted values.

Concordance Correlation CCC =
2ρσŷiσyi

σ2
ŷi
+σ2

yi
+(µŷi−µyi )

2 Higher CCC is better.

Coefficient where µŷi and µyi are the means
σ2ŷi and σ2yi are the variances

ρ is the correlation coefficient

Mean Error ME =
1

N

∑N
i=1(ŷi − yi) Lower |ME| is better.

Percentage Error PE =

∑N
i=1 ŷi −

∑N
i=1 yi∑N

i=1 yi
Lower |PE| is better.

Mean Squared Error MSE =
1

N

∑N
i=1(ŷi − yi)2 Lower MSE is better

Mean Absolute Error MAE =
1

N

∑N
i=1 |ŷi − yi| Lower MAE is better.
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Appendix: Tuning hyperparameters
R package Description

rpart Classification and regression tree (CART)

cp complexity parameter
minsplit minimum number of observations in a node in order to

be considered for splitting
maxdepth maximum depth of any node of the final tree

randomForest Bagging and Random Forests

mtry number of explanatory variables randomly sampled as
candidates at each split

nodesize minimum number of observations in the terminal nodes
ntree number of trees to grow/bootstrap samples

gbm Gradient boosting

n.trees number of trees to fit/iterations/basis functions
in the additive expansion

interaction.depth maximum depth of variable interactions(1 implies an additive model,
2 means a model with up to 2-way interactions)

n.minobsinnode minimum number of observations in the terminal nodes
shrinkage shrinkage parameter(learning rate or step-size reduction)

party/partykit Conditional inference trees

teststat type of the test statistic to be applied for variable selection
splitstat type of the test statistic to be applied for split point selection
testtype the way to compute the distribution of the test statistic
alpha significance level for variable selection
minsplit minimum sum of weights in a node in order to

be considered for splitting

party/partykit Conditional random forests

mtry number of explanatory variables randomly sampled as
candidates at each split

ntree number of trees to grow/bootstrap samples
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