

Metamodels and the valuation of large variable annuity portfolios

Guojun Gan, PhD, FSA Emiliano A. Valdez, PhD, FSA University of Connecticut

First Annual UCSB InsurTech Summit University of California, Santa Barbara Friday, May 3, 2019

Efficient valuation of large variable annuity portfolios

Running Time

3. Numerical results

What is a variable annuity?

A variable annuity is a retirement product, offered by an insurance company, that gives you the option to select from a variety of investment funds and then pays you retirement income, the amount of which will depend on the investment performance of funds you choose.

Variable annuities come with guarantees

UCSB InsurTech Summit 2019

Insurance companies have to make guarantee payments under bad market conditions

Example (An immediate variable annuity with GMWB)

- Total investment and initial benefits base: \$100,000
- Maximum annual withdrawal: \$8,000

Policy Year	INV Return	Fund Before WD	Annual WD	Fund After WD	Remaining Benefit	Guarantee CF
1	-10%	90,000	8,000	82,000	92,000	0
2	10%	90,200	8,000	82,200	84,000	0
3	-30%	57,540	8,000	49,540	76,000	0
4	-30%	34,678	8,000	26,678	68,000	0
5	-10%	24,010	8,000	16,010	60,000	0
6	-10%	14,409	8,000	6,409	52,000	0
7	10%	7,050	8,000	0	44,000	950
8	r	0	8,000	0	36,000	8,000
:	÷	:	:	:	:	÷
12	r	0	8,000	0	4,000	8,000
13	r	0	4,000	0	0	4,000

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

Dynamic hedging

Dynamic hedging is a popular approach to mitigate the financial risk, but

- Dynamic hedging requires calculating the dollar Deltas of a portfolio of variable annuity policies within a short time interval.
- The value of the guarantees cannot be determined by closed-form formula.
- The Monte Carlo simulation model is time-consuming.

There is also the additional computational issue related to reflect the effect of dynamic hedging in (quarterly) financial reporting.

Use of Monte Carlo method

Using the Monte Carlo method to value large variable annuity portfolios is time-consuming:

Example (Valuing a portfolio of 100,000 policies)

- 1,000 risk neutral scenarios
- 360 monthly time steps

 $100,000 \times 1,000 \times 360 = 3.6 \times 10^{10}!$

 $\frac{3.6\times10^{10} \text{ projections}}{200,000 \text{ projections/second}} = 50 \text{ hours!}$

Gan/Valdez (U. of Connecticut)

UCONN, 7 / 31

Metamodeling

- A metamodel, also a surrogate model, is a model of another model.
- Metamodeling has been applied to address the computational problems arising from valuation of variable annuity portfolios: a number of work published by co-author G. Gan.
- It involves four steps:

Selecting representative policies

An important step in the metamodeling process is the selection of representative policies. Gan and Valdez (2016) compared five different experimental design methods for the GB2 regression model:

- Random sampling
- Low-discrepancy sequence
- Data clustering (hierarchical k-means)
- Latin hypercube sampling
- Conditional Latin hypercube sampling

9 / 31

Some metamodels proposed/examined

We have studied and proposed some metamodels for the valuation of large VA portfolios:

- Ordinary kriging
- Universal kriging
- GB2 regression model
- Rank-order kriging (quantile kriging)
- Tree-based models joint work with Z. Quan

Kriging has its origins in geostatistics or spatial analysis. It is in some sense an interpolation method that is closely related to the idea of regression.

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

10 / 31

A portfolio of synthetic variable annuity policies

Feature	Value
Policyholder birth date	[1/1/1950, 1/1/1980]
Issue date	[1/1/2000, 1/1/2014]
Valuation date	1/1/2014
Maturity	[15, 30] years
Account value	[50000, 500000]
Female percent	40%
Product type	DBRP, DBRU, BBSU, etc.
Fund fee	30, 50, 60, 80, 10, 38, 45, 55, 57, 46bps
	for Funds 1 to 10, respectively
Base fee	200 bps
Rider fee	depends on product type
Number of funds invested	[1, 10]

VA product types in the synthetic portfolio

DBRPGMDB with return of premium0.25%DBRUGMDB with annual roll-up0.35%DBSUGMDB with annual ratchet0.35%DBSUGMDB with annual ratchet0.35%ABRPGMAB with return of premium0.50%ABRUGMAB with annual ratchet0.60%ABSUGMAB with annual ratchet0.60%IBRPGMIB with return of premium0.60%IBRUGMIB with annual ratchet0.70%IBSUGMIB with return of premium0.50%MBRPGMMB with return of premium0.60%MBRUGMMB with annual ratchet0.70%MBRPGMMB with annual ratchet0.60%MBRUGMMB with annual roll-up0.60%MBRUGMWB with annual ratchet0.75%WBRUGMWB with annual ratchet0.75%DBABGMDB + GMAB with annual ratchet0.75%DBIBGMDB + GMIB with annual ratchet0.75%DBMBGMDB + GMWB with annual ratchet0.75%DBMBGMDB + GMWB with annual ratchet0.75%DBWBGMDB + GMWB with annual ratchet0.75%DBWBGMDB + GMWB with annual ratchet0.75%	Product	Description	Rider Fee
DBRUGMDB with annual roll-up0.35%DBSUGMDB with annual ratchet0.35%DBSUGMDB with annual ratchet0.50%ABRPGMAB with return of premium0.60%ABSUGMAB with annual ratchet0.60%IBRPGMIB with return of premium0.60%IBRUGMIB with annual ratchet0.60%IBRUGMIB with annual roll-up0.70%IBSUGMIB with return of premium0.50%MBRPGMMB with return of premium0.60%MBRUGMMB with return of premium0.60%MBSUGMMB with annual ratchet0.60%MBRUGMWB with annual roll-up0.65%WBRUGMWB with annual ratchet0.75%WBSUGMWB with annual ratchet0.75%DBABGMDB + GMIB with annual ratchet0.75%DBIBGMDB + GMIB with annual ratchet0.75%DBMBGMDB + GMWB with annual ratchet0.75%DBMBGMDB + GMWB with annual ratchet0.75%DBWBGMDB + GMWB with annual ratchet0.75%DBWBGMDB + GMWB with annual ratchet0.75%	DBRP	GMDB with return of premium	0.25%
DBSUGMDB with annual ratchet0.35%ABRPGMAB with return of premium0.50%ABRUGMAB with return of premium0.60%ABSUGMAB with annual roll-up0.60%IBRPGMIB with annual ratchet0.60%IBRUGMIB with annual roll-up0.70%IBSUGMIB with annual roll-up0.70%MBRPGMMB with annual ratchet0.70%MBRUGMMB with annual ratchet0.60%MBRUGMMB with annual roll-up0.60%MBSUGMMB with annual roll-up0.60%WBRUGMWB with annual roll-up0.75%WBSUGMWB with annual ratchet0.75%DBABGMDB + GMAB with annual ratchet0.85%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%	DBRU	GMDB with annual roll-up	0.35%
ABRPGMAB with return of premium0.50%ABRUGMAB with annual roll-up0.60%ABSUGMAB with annual roll-up0.60%IBRPGMIB with annual ratchet0.60%IBRUGMIB with annual roll-up0.70%IBSUGMIB with annual roll-up0.70%IBSUGMIB with annual roll-up0.60%MBRPGMMB with return of premium0.50%MBRUGMMB with annual roll-up0.60%WBSUGMMB with annual roll-up0.65%WBRUGMWB with annual roll-up0.75%DBABGMDB + GMAB with annual ratchet0.75%DBIBGMDB + GMIB with annual ratchet0.85%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%	DBSU	GMDB with annual ratchet	0.35%
ABRUGMAB with annual roll-up0.60%ABSUGMAB with annual ratchet0.60%IBRPGMIB with return of premium0.60%IBRUGMIB with return of premium0.70%IBSUGMIB with annual roll-up0.70%IBSUGMIB with annual ratchet0.70%MBRPGMMB with return of premium0.50%MBRUGMMB with annual roll-up0.60%WBSUGMMB with annual roll-up0.60%WBRUGMWB with annual ratchet0.60%WBRUGMWB with annual ratchet0.75%DBABGMDB + GMAB with annual ratchet0.75%DBIBGMDB + GMIB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%	ABRP	GMAB with return of premium	0.50%
ABSUGMAB with annual ratchet0.60%IBRPGMIB with return of premium0.60%IBRUGMIB with return of premium0.70%IBSUGMIB with annual roll-up0.70%MBRPGMMB with annual ratchet0.70%MBRUGMMB with return of premium0.50%MBRUGMMB with annual roll-up0.60%MBSUGMMB with annual ratchet0.60%WBRPGMWB with annual ratchet0.60%WBRUGMWB with annual ratchet0.75%DBABGMDB + GMAB with annual ratchet0.75%DBIBGMDB + GMIB with annual ratchet0.85%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%	ABRU	GMAB with annual roll-up	0.60%
IBRPGMIB with return of premium0.60%IBRUGMIB with annual roll-up0.70%IBSUGMIB with annual ratchet0.70%MBRPGMMB with return of premium0.50%MBRUGMMB with annual roll-up0.60%MBSUGMMB with annual ratchet0.60%WBRPGMWB with annual ratchet0.60%WBRPGMWB with return of premium0.65%WBRUGMWB with annual ratchet0.75%DBABGMDB + GMAB with annual ratchet0.75%DBIBGMDB + GMIB with annual ratchet0.85%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMWB with annual ratchet0.75%	ABSU	GMAB with annual ratchet	0.60%
IBRUGMIB with annual roll-up0.70%IBSUGMIB with annual ratchet0.70%IBSUGMIB with annual ratchet0.50%MBRPGMMB with return of premium0.60%MBSUGMMB with annual ratchet0.60%WBRPGMWB with return of premium0.65%WBRUGMWB with annual ratchet0.75%WBSUGMWB with annual ratchet0.75%DBABGMDB + GMAB with annual ratchet0.85%DBIBGMDB + GMIB with annual ratchet0.75%DBMBGMDB + GMMB with annual ratchet0.75%DBMBGMDB + GMWB with annual ratchet0.75%	IBRP	GMIB with return of premium	0.60%
IBSU GMIB with annual ratchet 0.70% MBRP GMMB with return of premium 0.50% MBRU GMMB with annual roll-up 0.60% MBSU GMMB with annual roll-up 0.60% WBRP GMWB with annual roll-up 0.65% WBRU GMWB with annual roll-up 0.75% WBRU GMWB with annual roll-up 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMWB with annual ratchet 0.75% DBMB GMDB + GMWB with annual ratchet 0.75%	IBRU	GMIB with annual roll-up	0.70%
MBRP GMMB with return of premium 0.50% MBRU GMMB with annual roll-up 0.60% MBSU GMMB with annual roll-up 0.60% WBRP GMWB with annual ratchet 0.65% WBRU GMWB with annual roll-up 0.75% WBSU GMWB with annual roll-up 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMMB with annual ratchet 0.75% DBMB GMDB + GMMB with annual ratchet 0.75%	IBSU	GMIB with annual ratchet	0.70%
MBRU GMMB with annual roll-up 0.60% MBSU GMMB with annual ratchet 0.60% WBRP GMWB with annual ratchet 0.65% WBRU GMWB with annual roll-up 0.75% WBSU GMWB with annual ratchet 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMWB with annual ratchet 0.75% DBMB GMDB + GMWB with annual ratchet 0.75%	MBRP	GMMB with return of premium	0.50%
MBSU GMMB with annual ratchet 0.60% WBRP GMWB with return of premium 0.65% WBRU GMWB with annual roll-up 0.75% WBSU GMWB with annual ratchet 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMWB with annual ratchet 0.75% DBMB GMDB + GMWB with annual ratchet 0.75%	MBRU	GMMB with annual roll-up	0.60%
WBRP GMWB with return of premium 0.65% WBRU GMWB with annual roll-up 0.75% WBSU GMWB with annual ratchet 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMMB with annual ratchet 0.85% DBMB GMDB + GMWB with annual ratchet 0.75%	MBSU	GMMB with annual ratchet	0.60%
WBRU GMWB with annual roll-up 0.75% WBSU GMWB with annual ratchet 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMMB with annual ratchet 0.75%	WBRP	GMWB with return of premium	0.65%
WBSU GMWB with annual ratchet 0.75% DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMMB with annual ratchet 0.75% DBWB GMDB + GMMB with annual ratchet 0.75%	WBRU	GMWB with annual roll-up	0.75%
DBAB GMDB + GMAB with annual ratchet 0.75% DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMMB with annual ratchet 0.75% DBWB GMDB + GMWB with annual ratchet 0.90%	WBSU	GMWB with annual ratchet	0.75%
DBIB GMDB + GMIB with annual ratchet 0.85% DBMB GMDB + GMMB with annual ratchet 0.75% DBWB GMDB + GMWB with annual ratchet 0.90%	DBAB	GMDB + GMAB with annual ratchet	0.75%
DBMB GMDB + GMMB with annual ratchet 0.75% DBWB GMDB + GMWB with annual ratchet 0.90%	DBIB	GMDB + GMIB with annual ratchet	0.85%
DBWB GMDB + GMWB with annual ratchet 0.90%	DBMB	GMDB + GMMB with annual ratchet	0.75%
BETTE SITTE WITH annual fatchet 0.90/0	DBWB	GMDB+GMWB with annual ratchet	0.90%

UCONN, 12 / 31

Gan/Valdez (U. of Connecticut)

VA provides guaranteed appreciation of the benefits base

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN. 13 / 31

Fair market values of the guarantees

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 14 / 31

Training set - summary statistics - continuous variables

Response							
variables	Description	Min.	1st Q	Mean	Median	3rd Q	Max.
gmwbBalance	GMWB balance	0	0	27.8	0	0	422.26
gbAmt	Guaranteed benefit amount	51.88	183.98	323.29	306.89	437.36	920.62
FundValue1	Account value of the 1st fund	0	0	32.02	12.62	46.76	629.89
FundValue2	Account value of the 2nd fund	0	0	36.54	16.08	56.31	571.59
FundValue3	Account value of the 3rd fund	0	0	26.78	11.81	36.64	458.78
FundValue4	Account value of the 4th fund	0	0	25.8	10.48	38.29	539.36
FundValue5	Account value of the 5th fund	0	0	22.29	10.54	34.71	425.92
FundValue6	Account value of the 6th fund	0	0	37.15	19.64	53.96	654.64
FundValue7	Account value of the 7th fund	0	0	28.78	12.88	42.56	546.89
FundValue8	Account value of the 8th fund	0	0	31.27	15.59	46.24	529.57
FundValue9	Account value of the 9th fund	0	0	31.93	13.9	45.17	599.44
FundValue10	Account value of the 10th fund	0	0	32.6	13.86	45.09	510.43
age	Age of the policyholder	34.52	42.86	50.29	51.36	57.21	64.46
ttm	Time to maturity in years	0.75	10.09	14.61	14.6	19.12	27.52

Tree-based models

Quan, Gan and Valdez (2019) compared the prediction performance of various tree-based models:

- Classification and Regression Trees (CART)
 - pruned by introducing penalty
- Ensemble methods: aggregate several regression trees to improve prediction accuracy
 - Bagging and random forests
 - Gradient boosting
- Unbiased recursive partitioning:
 - Conditional inference trees
 - Conditional random forests

16 / 31

Unbiased recursive partitioning

CART algorithms employ what is called recursive binary partitioning, which uses greedy search causing some drawbacks:

- Overfitting
 - Use a pruning process by applying cross-validation
- Bias in variable selection
 - Especially true when the explanatory variables present many possible splits or have missing values
 - Hothorn, et al. (2006) introduced conditional inference trees based on a partitioning of a statistic that is used to measure the association between the response and the explanatory variables.

A regression tree

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 18 / 31

A conditional inference tree

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 19 / 31

Prediction accuracy of various models

Model	Gini	R^2	CCC	ME	PE	MSE	MAE
Regression tree (CART)	0.786	0.845	0.917	1.678	-0.025	3278.578	31.421
Bagged trees	0.842	0.918	0.954	2.213	-0.033	1720.725	20.334
Gradient boosting	0.836	0.942	0.969	1.311	-0.019	1214.899	19.341
Conditional inference trees	0.824	0.869	0.930	0.905	-0.013	2754.853	26.536
Conditional random forests	0.836	0.892	0.940	1.596	-0.024	2273.385	23.219
Ordinary Kriging GB2	0.815 0.827	0.857 0.879	0.912 0.930	-0.812 0.106	0.012 -0.002	3006.192 2554.246	27.429 27.772

A heatmap of model performance

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 21 / 31

Computational efficiency

Model	Computation Time
Regression tree (CART)	0.13 secs
Bagged trees	2.70 secs
Gradient boosting	4.69 secs
Conditional inference trees	0.25 secs
Conditional random forests	1214.72 secs
Ordinary Kriging	277.49 secs
GB2	23.44 secs

Variable importance for tree-based models

Regression tree (CART)

Bagged trees

UCONN, 23 / 31

Gradient boosting

UCSB InsurTech Summit 2019

Gan/Valdez (U. of Connecticut)

Variable importance for tree-based models

Conditional inference trees

Conditional random forests

UCSB InsurTech Summit 2019

Lift curve plots - performance visualization

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 25 / 31

Prediction and observed fair market values

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN. 26 / 31

Concluding remarks

We explore tree-based models and their extensions in developing metamodels for predicting fair market values. Besides computational efficiency and predictive accuracy, they have several advantages as an alternative predictive tool:

- Tree-based models are considered as nonparametric models that do not require distribution assumptions.
- Tree-based models can perform variable selection by assessing the relative importance.
- Tree-based models, especially with single smaller-sized trees, are straightforward to interpret by a visualization of the tree structure. This visualization was illustrated both in the case of regression tree and conditional inference tree.
- When compared to other metamodels for prediction purposes, tree-based models require less data preparation as they preserve the original scale to be more interpretable.

I ICONN

Metamodeling book

Metamodeling for Variable Annuities

Variable annuties are life insurance products that offer various types of financial guarantees. Especially for insurers with large variable annulty portfolos, valuation of these guarantees is computationally intensive. Metamodeling for Variable Annutibes is devold to metamodeling approaches that have been proposed recently in the academic iterature to address the computational problems.

This book is primarily written for undergraduate students, who study acturalis dence statistics, risk managemen, and financial mathematics. It is equaly useful for practitioners, who work in insurance comparies, consulting firms, and barks. The book is also a source of herence for researchers and graduate students with scholarly inferent in computational issues related to variable annultes and other similar insurance products.

- Key features of this book include:
- Three experimental design methods and six metamodels are covered in detail
- · Theories behind the methods are clearly presented
- Methods are comprehensively demonstrated by a synthetic dataset
- Data and R source code are publicly accessible
- Numerical results are easily reproducible

STATISTICS

Metamodeling for Variable Annuities

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

Metamodeling for Variable Annuities

Gan • Valdes

CRC

UCONN, 28 / 31

Appendix: Validation measures

Validation measure	Description	Interpretation
Gini Index	$Gini = 1 - \frac{2}{N-1} \left(N - \frac{\sum_{i=1}^{N} i\tilde{y}_i}{\sum_{i=1}^{N} \tilde{y}_i} \right)$	Higher Gini is better.
	where \tilde{y} is the corresponding to y after ranking the corresponding predicted values $\widehat{y}.$	
Coefficient of Determination	$R^{2} = 1 - \frac{\sum_{i=1}^{N} (\widehat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{N} \left(y_{i} - \frac{1}{n} \sum_{i=1}^{n} y_{i}\right)^{2}}$	Higher R^2 is better.
	where \widehat{y} is predicted values.	
Concordance Correlation	$CCC = \frac{2\rho\sigma_{\widehat{y}_i}\sigma_{y_i}}{\sigma_{\widehat{y}_i}^2 + \sigma_{y_i}^2 + (\mu_{\widehat{y}_i} - \mu_{y_i})^2}$	Higher CCC is better.
Coefficient	where $\mu_{\widehat{y}_i}$ and μ_{y_i} are the means	
	$\sigma_{\widehat{y}_i}^2$ and $\sigma_{y_i}^2$ are the variances $ ho$ is the correlation coefficient	
Mean Error	$ME = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)$	Lower $\left ME \right $ is better.
Percentage Error	$PE = \frac{\sum_{i=1}^{N} \hat{y}_i - \sum_{i=1}^{N} y_i}{\sum_{i=1}^{N} y_i}$	Lower $\left PE \right $ is better.
Mean Squared Error	$MSE = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2$	Lower MSE is better
Mean Absolute Error	$MAE = \frac{1}{N} \sum_{i=1}^{N} \widehat{y}_i - y_i $	Lower MAE is better.

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 29 / 31

Appendix: Tuning hyperparameters

R package	Description
rpart	Classification and regression tree (CART)
cp minsplit maxdepth	complexity parameter minimum number of observations in a node in order to be considered for splitting maximum depth of any node of the final tree
randomForest	Bagging and Random Forests
mtry	number of explanatory variables randomly sampled as candidates at each split
nodesize ntree	minimum number of observations in the terminal nodes number of trees to grow/bootstrap samples
gbm	Gradient boosting
n.trees	number of trees to fit/iterations/basis functions in the additive expansion maximum denth of variable interactions(1 implies an additive model
n.minobsinnode shrinkage	2 means a model with up to 2-way interactions) minimum number of observations in the terminal nodes shrinkage parameter(learning rate or step-size reduction)
party/partykit	Conditional inference trees
teststat splitstat testtype alpha minsplit	type of the test statistic to be applied for variable selection type of the test statistic to be applied for split point selection the way to compute the distribution of the test statistic significance level for variable selection minimum sum of weights in a node in order to be considered for splitting
party/partykit	Conditional random forests
mtry	number of explanatory variables randomly sampled as candidates at each split
ntree	number of trees to grow/bootstrap samples

Gan/Valdez (U. of Connecticut)

UCSB InsurTech Summit 2019

UCONN, 30 / 31

References

Breiman, L., et al. (1984). Classification and Regression Trees. Taylor & Francis Group, LLC: Boca Raton, FL.

Gan, G. and Valdez, E.A. (2019). *Metamodeling for Variable Annuities*. CRC Press: Boca Raton, FL.

Gan, G. and Valdez, E.A. (2017). Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets. *Dependence Modeling*. 5:354-374.

Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. *Journal of Computational and Graphical Statistics*. 15(3):651-674.

Loh, W.-Y. (2014). Fifty years of classification and regression trees. *International Statistical Review*. 82(3):329-348.

Quan, Z., Gan, G. and Valdez, E.A. (2019). Tree-based models for variable annuity valuation: Parameter tuning and empirical analysis. Submitted for publication.

LICON

31 / 31