

Next Generation Data for Insurance

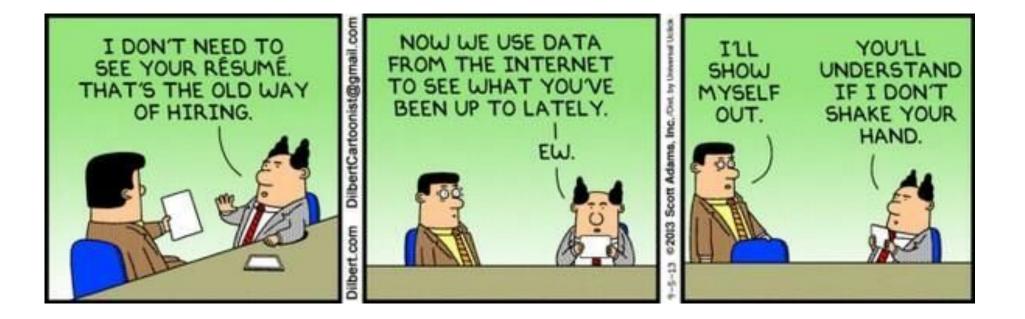
1st Annual UCSB InsurTech Summit May 3, 2019

Overview of ML Systems and Products at Carpe Data Adam P Tashman

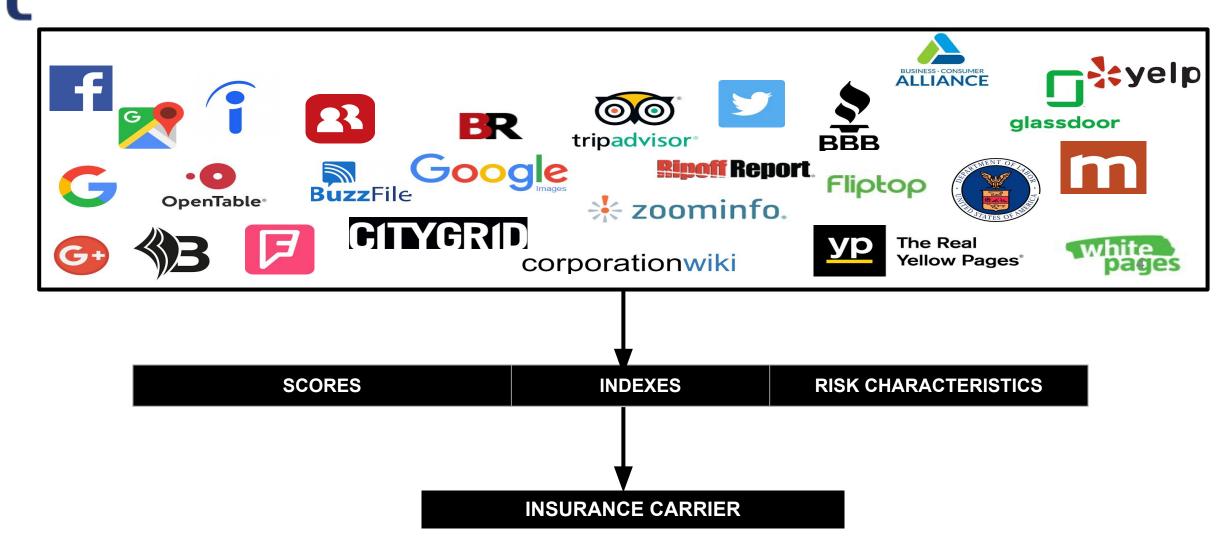
Contents

- Carpe Data Mission
- Insurance Policy Continuum and Applications
- Commercial Data Store: Process Overview
- Risk Characteristic Extraction
- Building Better Text Classifiers
- Building Better Image Classifiers
- Carpe Data Indexes Overview
- Summary

It Started with Background Checks



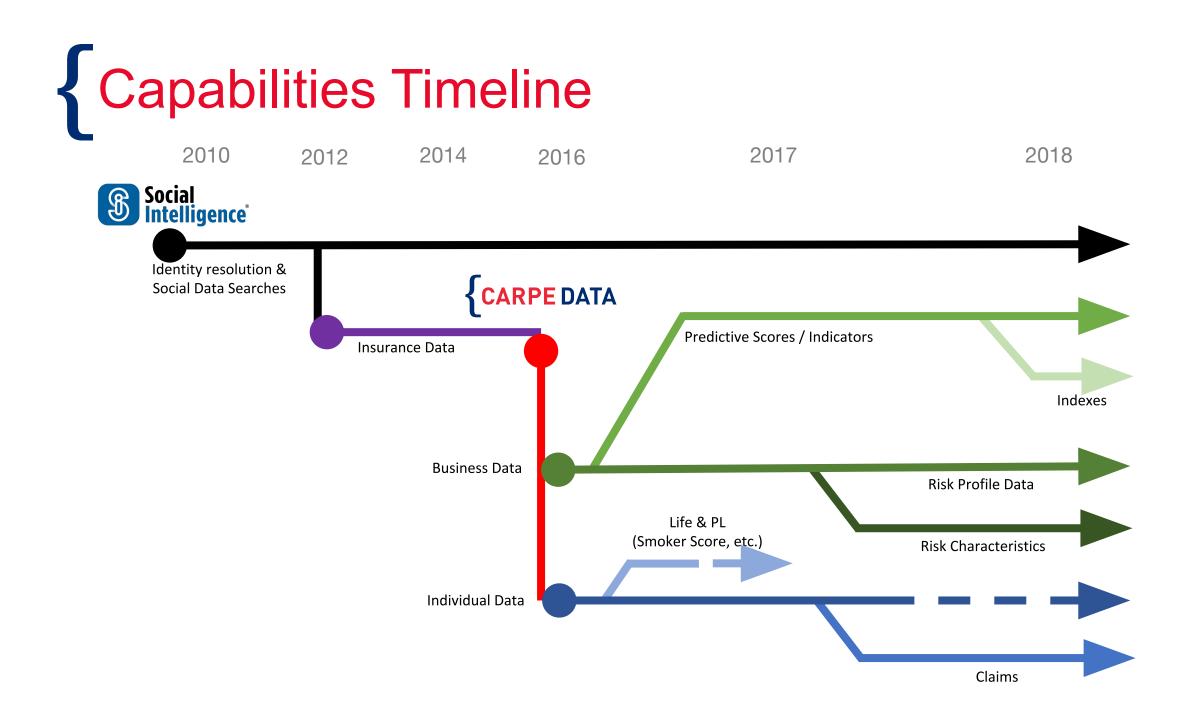
Mission: Map Emerging Data to Impactful Products

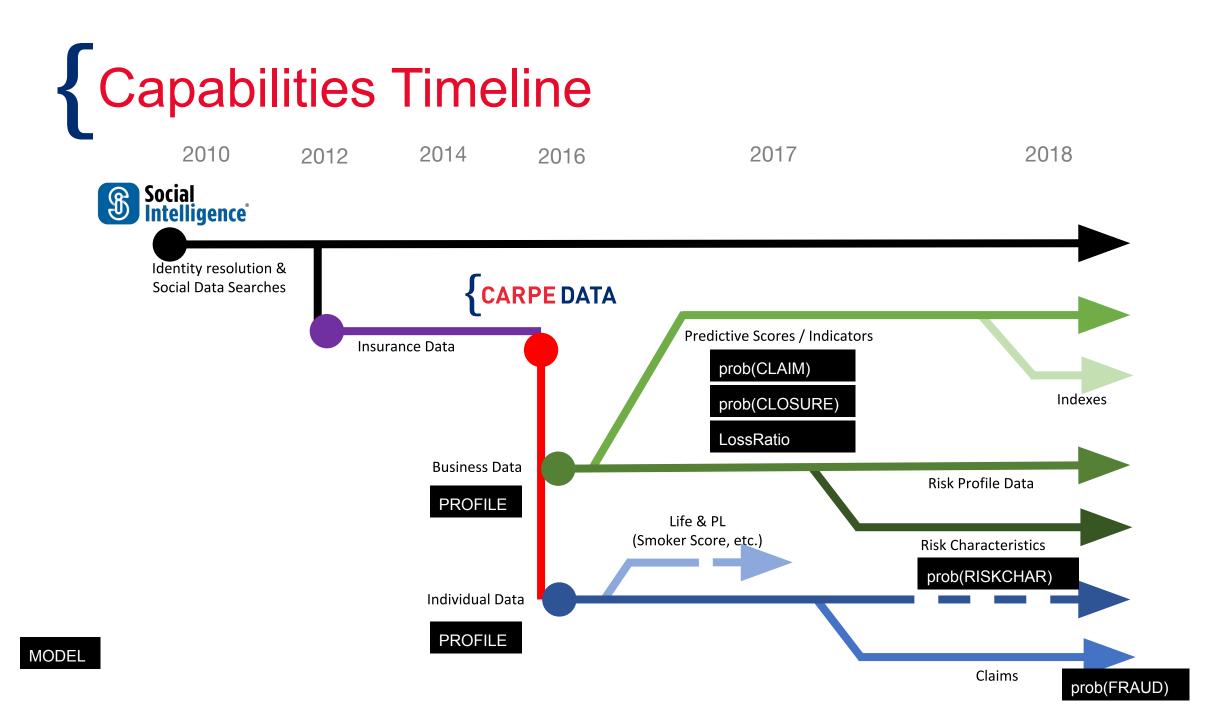


The Insurance Policy Continuum

Product Development	Marketing	Quote	Issue Policy	File Claim	Renew	Portfolio Management
Book Reviews	Lead scoring Appetite Matching	Data pre-fill Validation Risk scoring Qualification	Qualification 3 rd party data cost reduction	Identify valid claims Fast track payments Identify potential fraud for SIU	Offer discounts 3 rd party data cost reduction Program selection	Cross sell identification Flag Premium Leakage

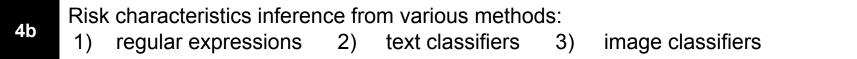
PRODUCTS ACROSS THE POLICY LIFE CYCLE





Commercial Data Store: Process Overview

1	Entity Resolution at business location level
2	Profile data collection: location, contact information, hours of operation, social data,
3	Business type classification (NAICS code)
4a	Given NAICS, collect relevant risk characteristics full-service restaurant > {serves alcohol? open late? delivery?}



5	Compute indexes,	which are co	omposites of	data elements	(e.g.,	customer	review inde	x)
---	------------------	--------------	--------------	---------------	--------	----------	-------------	----

6 Compute risk scores (probability of claim, loss ratio, ...)

Multiple methods considered for retrieval. Sometimes methods can corroborate (images with captions).

	Regular Expressions	Text Classifier	Image Classifier
RECALL	generally LOW - regexes don't learn	HIGH given sufficient data	HIGH given sufficient data
PRECISION	generally HIGH if developer carefully tests	can be LOW (high false positives)	can be LOW (high false positives)
DATA VOLUME REQUIRED	LOW since developed from a priori knowledge	HIGH	HIGH
DEV TIME	HIGH since all patterns must be enumerated	LOW (collect data, train, save model)	HIGH due to complex models, large set of hyperparams, large set of training data
NOTE			can produce embarrassing errors

Multiple methods considered for retrieval. Sometimes methods can corroborate (images with captions).

	Regular Expressions	Text Classifier	Image Classifier	
RECALL	generally LOW - regexes don't learn	HIGH given sufficient data	HIGH given sufficient data	
PRECISION	generally HIGH if developer carefully tests	can be LOW (high false positives)	can be LOW (high false positives)	
DATA VOLUME REQUIRED	LOW since developed from a priori knowledge	HIGH	HIGH	
DEV TIMEHIGH since all patterns must be enumerated		LOW (collect data, train, save model)	HIGH due to complex models, large set of hyperparams, large set of training data	
NOTE			can produce embarrassing errors	

Building Better Text Classifiers

1. Carefully think through each step of preprocessing Use case: Does the business offer 3D printing services? Better not strip numeric!

2. Feature engineering

Several ways to quantitatively represent text including n-gram count, n-gram presence, TF-IDF

3. Word embeddings can be powerful (Word2Vec, GloVe)

In essence, words are combined with their context to generate representations useful for semantic and syntactic similarity

Particularly in web data, the dictionary can be much larger than a proper dictionary (slang, misspellings) Hard to control for these characteristics, but word embeddings can help

4. Class Balancing

In particular for rare classes, balancing can offer drastic improvement

Building Better Image Classifiers

1. Class Selection When building datasets, include from three areas:

Class	Example
contains label	swimming pool
does not contain label	people, cars, logos,
edge cases	beach, lake

2. Augmentation

Include perturbed images in training set (rotations, translations, cropping). Be sure these transformations preserve the label

3. Image Selection

Train on "challenging" images. Many Google Images are simplistic with subject against a monochrome background.

4. Transfer Learning

Load a model trained on a massive dataset, repurpose the intermediate features, and add customized layers

5. **Dropout** This is a powerful regularization method which randomly drops neurons during training.

A suite of indexes targeting dimensions of risk to insurance carriers

- Targeted low correlation between indexes
- Tuned by segment & geography

Indexes Provide Scalable Data Integration

Our collected data elements are in the thousands, and **rapidly** growing Counting business presence on websites, we collect **millions** of data elements

