Insurance Pricing in a Competitive Market

Arthur Charpentier (Université du Québec à Montréal)

InsurTech Summit, UCSB, May 2019

Insurance, "segmentation" \& "mutualization"

"Insurance is the contribution of the many to the misfortune of the few"
What should be that "contribution" ? Premium
mutualization (of risk) : spread of risk among several parties see pooling, sharing
$\pi=\mathbb{E}_{\mathbb{P}}\left[S_{1}\right]$
(market) segmentation : division of a market into identifiable groups see differentiation, customization
$\pi(\omega)=\mathbb{E}_{\mathbb{P}}\left[S_{1} \mid \Omega=\omega\right]$
for some (unobservable) risk factor Ω

Use of features (covariates) \boldsymbol{x} as a proxy
$\pi(\boldsymbol{x})=\mathbb{E}_{\mathbb{P}}\left[S_{1} \mid \boldsymbol{X}=\boldsymbol{x}\right]=\mathbb{E}_{\mathbb{P}_{\boldsymbol{x}}}\left[S_{1}\right]$

Risk Transfert without Segmentation

	Insured	Insurer
Loss	$\mathbb{E}[S]$	$S-\mathbb{E}[S]$
Average Loss	$\mathbb{E}[S]$	0
Variance	0	$\operatorname{Var}[S]$

All the risk - Var $[S]$ - is kept by the insurance company.
Remark: all those interpretation are discussed in Denuit \& Charpentier (2004).

Risk Transfert with Segmentation and Perfect Information
Assume that information $\boldsymbol{\Omega}$ is observable,

	Insured	Insurer
Loss	$\mathbb{E}[S \mid \boldsymbol{\Omega}]$	$S-\mathbb{E}[S \mid \boldsymbol{\Omega}]$
Average Loss	$\mathbb{E}[S]$	0
Variance	$\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}]]$	$\operatorname{Var}[S-\mathbb{E}[S \mid \boldsymbol{\Omega}]]$

Observe that $\operatorname{Var}[S-\mathbb{E}[S \mid \boldsymbol{\Omega}]]=\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}]]$, so that

$$
\operatorname{Var}[S]=\underbrace{\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}]]}_{\rightarrow \text { insurer }}+\underbrace{\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}]]}_{\rightarrow \text { insured }} .
$$

Risk Transfert with Segmentation and Imperfect Information
Assume that $\boldsymbol{X} \subset \boldsymbol{\Omega}$ is observable

	Insured	Insurer
Loss	$\mathbb{E}[S \mid \boldsymbol{X}]$	$S-\mathbb{E}[S \mid \boldsymbol{X}]$
Average Loss	$\mathbb{E}[S]$	0
Variance	$\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{X}]]$	$\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{X}]]$

Now

$$
\begin{aligned}
\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{X}]] & =\mathbb{E}[\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]]+\mathbb{E}[\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]] \\
& =\underbrace{\mathbb{E}[\operatorname{Var}[S \mid \boldsymbol{\Omega}]]}_{\text {perfect pricing }}+\underbrace{\mathbb{E}\{\operatorname{Var}[\mathbb{E}[S \mid \boldsymbol{\Omega}] \mid \boldsymbol{X}]\}}_{\text {misfit }}
\end{aligned}
$$

spiral of segmentation...

Risk Transfert : Visualization

Pricing without Segmentation : $\pi(x)=\mathbb{E}[Y]$ (whatever x)

Risk Transfert : Visualization

Pricing with Imperfect Segmentation : $\pi(x)=\mathbb{E}[Y \mid x]=\left\{\begin{array}{l}\bar{\pi} \text { if } x>s \\ \underline{\pi} \text { if } x \leq s\end{array}\right.$

Risk Transfert : Visualization

Pricing with Imperfect Segmentation : $\pi(x)=\mathbb{E}[Y \mid x]=\pi_{\lfloor x\rfloor}$

Risk Transfert : Visualization

Pricing with Perfect Segmentation : $\pi(x)=\mathbb{E}[Y \mid x]$ with $x=\omega$.

Actuarial Pricing Model

Premium is $\mathbb{E}[S \mid \boldsymbol{X}=\boldsymbol{x}]=\mathbb{E}\left[\sum_{i=1}^{N} Y_{i} \mid \boldsymbol{X}=\boldsymbol{x}\right]=\mathbb{E}[N \mid \boldsymbol{X}=\boldsymbol{x}] \cdot \mathbb{E}[Y \mid \boldsymbol{X}=\boldsymbol{x}]$
Statistical and modeling issues to approximate based on some training datasets, with claims frequency $\left\{n_{i}, \boldsymbol{x}_{i}\right\}$ and individual losses $\left\{y_{i}, \boldsymbol{x}_{i}\right\}$.

Use GLM to approximate $\mathbb{E}[N \mid \boldsymbol{X}=\boldsymbol{x}]$ and $\mathbb{E}[Y \mid \boldsymbol{X}=\boldsymbol{x}]$
Recall that $\mathbb{E}[\mathbb{E}[S \mid \boldsymbol{X}]]=\mathbb{E}[S]$

How can we claim that model $\widehat{\pi}(\boldsymbol{x})=\widehat{\mathbb{E}}[S \mid \boldsymbol{X}=\boldsymbol{x}]$ is "good"?

How can we visualize the goodness of a model ?
In the context of classification, use ROC curve

Source: Charpentier, Flachaire \& Ly (2018)

How can we visualize the goodness of a model ?

Source : https://www.progressive.com/jobs/analyst-program/

Model Comparison and Lorenz curves

Consider an ordered sample $\left\{y_{1}, \cdots, y_{n}\right\}$ of incomes, with $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$, then Lorenz curve is

$$
\left\{F_{i}, L_{i}\right\} \text { with } F_{i}=\frac{i}{n} \text { and } L_{i}=\frac{\sum_{j=1}^{i} y_{j}}{\sum_{j=1}^{n} y_{j}}
$$

We have observed losses y_{i} and premiums $\widehat{\pi}\left(\boldsymbol{x}_{i}\right)$. Consider an ordered sample by the model, see Frees, Meyers \& Cummins (2014), $\widehat{\pi}\left(\boldsymbol{x}_{1}\right) \geq \widehat{\pi}\left(\boldsymbol{x}_{2}\right) \geq \cdots \geq \widehat{\pi}\left(\boldsymbol{x}_{n}\right)$, then plot

$$
\left\{F_{i}, L_{i}\right\} \text { with } F_{i}=\frac{i}{n} \text { and } L_{i}=\frac{\sum_{j=1}^{i} y_{j}}{\sum_{j=1}^{n} y_{j}}
$$

Model Comparison for Life Insurance Models

Consider the case of a death insurance contract, that pays 1 if the insured deceased within the year.
$\pi(x)=\mathbb{E}\left[T_{x} \leq t+1 \mid T_{x}>t\right]$

- No price discrimination $\pi=\mathbb{E}[\pi(X)]$
- Perfect discrimination $\pi(x)$
- Imperfect discrimination
$\pi_{-}=\mathbb{E}[\pi(X) \mid X<s]$ and $\pi_{+}=\mathbb{E}[\pi(X) \mid X>s]$

How to understand this (pseudo)-Lorenz curve ?

Where is the upper bound?

Insurance, Risk Pooling and Solidarity

Consider flood risk, in France

One can look at the "Lorenz curve"

Price Differentiation, a Toy Example
Claims frequency $N \in\{0,1\}$ (average cost $=1,000$)

		X_{1}			
		Young	Experienced	Senior	Total
X_{2}	Town	12%	9%	9%	9.5%
		(500)	$(2,000)$	(500)	$(3,000)$
	8%	6.67%	4%	6.33%	
		(500)	$(1,000)$	(500)	$(2,000)$
Total	10%	8.22%	6.5%	8.23%	
		$(1,000)$	$(3,000)$	$(1,000)$	$(5,000)$

from Charpentier, Denuit \& Élie (2015)

Price Differentiation, a Toy Example

	$\begin{gathered} \mathrm{Y}-\mathrm{T} \\ (500) \end{gathered}$	$\begin{aligned} & \mathrm{Y}-\mathrm{O} \\ & (500) \end{aligned}$	$\begin{gathered} \text { E-T } \\ (2,000) \end{gathered}$	$\begin{gathered} \text { E-O } \\ (1,000) \end{gathered}$	$\begin{gathered} \text { S-T } \\ (500) \end{gathered}$	$\begin{gathered} \text { S-O } \\ (500) \end{gathered}$
none	82.3	82.3	82.3	82.3	82.3	82.3
$X_{1} \times X_{2}$	120	80	90	66.7	90	40
market	82.3	80	82.3	66.7	82.3	40
none	82.3	82.3	82.3	82.3	82.3	82.3
X_{1}	100	100	82.2	82.2	65	65
X_{2}	95	63.3	95	63.3	95	63.3
$X_{1} \times X_{2}$	120	80	90	66.7	90	40
market	82.3	63.3	82.2	63.3	65	40

Price Differentiation, a Toy Example

	premium	losses	loss ratio		99.5% quantile	Market Share
none	247	285	115.4%	$(\pm 8.9 \%)$	132%	66.1%
$X_{1} \times X_{2}$	126.67	126.67	100.0%	$(\pm 10.4 \%)$	123%	33.9%
market	373.67	411.67	110.2%	$(\pm 5.1 \%)$	123%	100.0%
none	41.17	60	145.7%	$(\pm 34.6 \%)$	189%	11.6%
X_{1}	196.94	225	114.2%	$(\pm 11.8 \%)$	140%	55.8%
X_{2}	95	106.67	112.3%	$(\pm 15.1 \%)$	134%	26.9%
$X_{1} \times X_{2}$	20	20	100.0%	$(\pm 41.9 \%)$	160%	5.7%
market	353.10	411.67	116.6%	$(\pm 5.3 \%)$	130%	100.0%

From Econometric to 'Machine Learning' Techniques

In a competitive market, insurers can use different sets of variables and different models, e.g. GLMs, $N_{t} \mid \boldsymbol{X} \sim \mathcal{P}\left(\lambda_{\boldsymbol{X}} \cdot t\right)$ and $Y \mid \boldsymbol{X} \sim \mathcal{G}\left(\mu_{\boldsymbol{X}}, \varphi\right)$

$$
\widehat{\pi}_{j}(\boldsymbol{x})=\widehat{\mathbb{E}}\left[N_{1} \mid \boldsymbol{X}=\boldsymbol{x}\right] \cdot \widehat{\mathbb{E}}[Y \mid \boldsymbol{X}=\boldsymbol{x}]=\underbrace{\exp \left(\widehat{\boldsymbol{\alpha}}^{\top} \boldsymbol{x}\right)}_{\text {Poisson } \mathcal{P}\left(\lambda_{\boldsymbol{x}}\right)} \cdot \underbrace{\exp \left(\widehat{\boldsymbol{\beta}}^{\top} \boldsymbol{x}\right)}_{\text {Gamma } \mathcal{G}\left(\mu_{\boldsymbol{X}}, \varphi\right)}
$$

that can be extended to GAMs,

$$
\widehat{\pi}_{j}(\boldsymbol{x})=\underbrace{\exp \left(\sum_{k=1}^{d} \widehat{s}_{k}\left(x_{k}\right)\right)}_{\text {Poisson } \mathcal{P}\left(\lambda_{\boldsymbol{x}}\right)} \cdot \underbrace{\exp \left(\sum_{k=1}^{d} \widehat{t}_{k}\left(x_{k}\right)\right)}_{\text {Gamma } \mathcal{G}\left(\mu_{\boldsymbol{X}}, \varphi\right)}
$$

or some Tweedie model on S_{t} (compound Poisson, see Tweedie (1984)) conditional on \boldsymbol{X}

From Econometric to 'Machine Learning’ Techniques

 (see Charpentier \& Denuit (2005) or Kaas et al. (2008)) or any other statistical model$$
\widehat{\pi}_{j}(\boldsymbol{x}) \text { where } \widehat{\pi}_{j} \in \underset{m \in \mathcal{F}_{j}: \mathcal{X}_{j} \rightarrow \mathbb{R}}{\operatorname{argmin}}\left\{\sum_{i=1}^{n} \ell\left(s_{i}, m\left(\boldsymbol{x}_{i}\right)\right)\right\}
$$

For some loss function $\ell: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$(usually an L_{2} based loss, $\ell(s, y)=(s-y)^{2}$ since $\operatorname{argmin}\{\mathbb{E}[\ell(S, m)], m \in \mathbb{R}\}$ is $\mathbb{E}(S)$, interpreted as the pure premium).

For instance, consider regression trees, forests, neural networks, or boosting based techniques to approximate $\pi(\boldsymbol{x})$, and various techniques for variable selection, such as LASSO (see Hastie et al. (2009) or Charpentier et al. (2017) for a description and a discussion).

With d competitors, each insured i has to choose among d premiums, $\boldsymbol{\pi}_{i}=\left(\widehat{\pi}_{1}\left(\boldsymbol{x}_{i}\right), \cdots, \widehat{\pi}_{d}\left(\boldsymbol{x}_{i}\right)\right) \in \mathbb{R}_{+}^{d}$.

Machine Learning \& Credit

Before discussing the use of those models in insurance, note that the same issues exist in credit, see Hardt, Price \& Srebro (2017).
"the shift from traditional to machine learning lending models may have important distributional effects for consumers [...] machine learning would offer lower rates to racial groups who already were at an advantage under the traditional model, but it would also benefit disadvantaged groups by enabling them to obtain a mortgage in the first place "Fuster, Goldsmith-Pinkham, Ramadorai \& Walther (2017)

Field experiment: the actuarial pricing games

Actuarial pricing is data based, and model based

To understand how model influence pricing we ran some actuarial pricing games

Insurance Ratemaking Before Competition

Insurance Ratemaking Before Competition Gas Type Diesel

Insurance Ratemaking Before Competition Gas Type Regular

Insurance Ratemaking Before Competition Paris Region

Insurance Ratemaking Before Competition Car Weight

Insurance Ratemaking Before Competition Car Value

Insurance Ratemaking Competition : High Correlation ?

Insurance Ratemaking Competition : High Correlation ?

Insurance Ratemaking Competition

We need a Decision Rule to select premium chosen by insured i

Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

Insurance Ratemaking Competition

Basic 'rational rule' $\pi_{i}=\min \left\{\widehat{\pi}_{1}\left(\boldsymbol{x}_{i}\right), \cdots, \widehat{\pi}_{d}\left(\boldsymbol{x}_{i}\right)\right\}=\widehat{\pi}_{1: d}\left(\boldsymbol{x}_{i}\right)$
Ins1 Ins2 Ins3 Ins4 Ins5 Ins6
$\begin{array}{llllll}787.93 & 706.97 & 1032.62 & 907.64 & 822.58 & 603.83\end{array}$
$\begin{array}{llllll}170.04 & 197.81 & 285.99 & 212.71 & 177.87 & 265.13\end{array}$
$473.15 \quad 447.58 \quad 343.64 \quad 410.76 \quad 414.23 \quad 425.23$
$\begin{array}{llllll}337.98 & 336.20 & 468.45 & 339.33 & 383.55 & 672.91\end{array}$

Insurance Ratemaking Competition
A more realistic rule $\pi_{i} \in\left\{\widehat{\pi}_{1: d}\left(\boldsymbol{x}_{i}\right), \widehat{\pi}_{2: d}\left(\boldsymbol{x}_{i}\right), \widehat{\pi}_{3: d}\left(\boldsymbol{x}_{i}\right)\right\}$

Ins1	Ins2	Ins3	Ins4	Ins5	Ins6
787.93	706.97	1032.62	907.64	822.58	603.83
170.04	197.81	285.99	212.71	177.87	265.13
473.15	447.58	343.64	410.76	414.23	425.23
337.98	336.20	468.45	339.33	383.55	672.91

A Game with Rules... but no (explicit) Goal

Two datasets : a training one, and a pricing one (without the losses in the later)
Step 1 : provide premiums to all contracts in
the same pricing dataset
rescaling $\widetilde{\pi}_{j}(\boldsymbol{x})=\alpha_{j} \widehat{\pi}_{j}(\boldsymbol{x})$
such that $\sum_{i \in \text { pricing }} \tilde{\pi}_{j}\left(\boldsymbol{x}_{i}\right)$ is identical, $\forall j$
Step 2 : allocate insured among players
Season 113 players
Season 214 players
Step 3 [season 2] : provide additional informa-
tion (premiums of competitors)
Season 323 players (3 markets, $8+8+7$)
Step 3-6 [season 3] : dynamics, 4 years

A Game with Rules... Forthcoming versions

Two datasets : a training one $\left(\boldsymbol{x}_{i}, y_{i}\right)$, and a pricing one $\left(\boldsymbol{x}_{i}\right)$
Step 1 : provide a pricing model (.r or .py)
Step 1a : validate a small subset of the pricing one
Step 1b : validate $\sum_{i \in \text { training }_{j}} \widetilde{\pi}_{j}\left(\boldsymbol{x}_{i}\right) \geq \sum_{i \in \text { training }_{j}} y_{i}$

$$
\text { validate } \sum_{i \in \text { training }_{j}, x_{i} \in \mathcal{S}} \widetilde{\pi}_{j}\left(\boldsymbol{x}_{i}\right) \geq \sum_{i \in \text { training }_{j}, x_{i} \in \mathcal{S}} y_{i} \text { for some set } \mathcal{S}
$$

Step 2 : allocate insured among players

Pricing Game in 2015

Insurer 4

GLM for frequency and standard cost (large claimes were removed, above 15k), Interaction Age and Gender
Actuary working for a mutuelle company

Insurer 11

Use of two XGBoost models (bodily injury and material), with correction for negative premiums
Actuary working for a private insurance company

Pricing Game in 2017

Insurer 6 (market 3)
Team of two actuaries (degrees in Engineering and Physics), in Vancouver, Canada. Used GLMs (Tweedie), no territorial classification, no use of information about other competitors
"Segments with high market share and low loss ratios were also given some premium increase"

Pricing Game in 2017
Insurer 7 (market 1)
Actuary in France, used random forest for variable selection, and GLMs

Pricing Game in 2017

Insurer 15 (market 2)
Actuary, working as a consultant, Margin Method with iterations, MS Access \& MS Excel

Pricing Game in 2017

Insurer 21 (market 1)
Actuary, working as a consultant, used GLMs, with variable selection using LARS and LASSO

Iterative learning algorithm (codes available on github)

Pricing Game in 2017
Insurer 4 (market 2)
Actuary, working as a consultant, used XGBOOST, used GLMs for year 3.

Pricing Game in 2017

Insurer 8 (market 3)
Mathematician, working on Solvency II software in Austria
Generalized Additive Models with spatial variable

What's Next ?

- hard to derive theoretical properties of model competition equilibrium
- more on-going field studies... but hard to get players...
- 2018 game, more (too) complicated design...
- 2019 game(s)...
to be continued...

