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Abstract

This article provides a unified and comparative review of some existing test
methods for the hypothesis of a parametric regression function using smooth-
ing spline models. Some tests such as the locally most powerful (LMP) test
by Cox, Koh, Wahba and Yandell (1988), the generalized maximum likelihood
ratio (GML) test and the generalized cross validation (GCV) test by Wahba
(1990) were developed from the corresponding Bayesian models. Their fre-
quentist properties have not been studied. We conduct simulations to eval-
uate and compare finite sample performances. Simulation results show that
the performances of these tests depend on the shape of the true function. The
LMP and GML tests are more powerful for low frequency functions while the
GCYV test is more powerful for high frequency functions. For all test statistics,
distributions under the null hypothesis are complicated. Computationally in-
tensive Monte Carlo methods can be used to calculate null distributions. We
also propose approximations to these null distributions and evaluate their
performances by simulations.
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1 Introduction

As a popular nonparametric regression method, spline smoothing has attracted a
great deal of attention. Most research in the literature concentrates on estimation,
while inference, especially hypothesis testing, has received less attention. Several
test procedures were developed only for simple hypotheses of simple spline models.
Their properties and performances are not well understood, one of the reasons that
they are seldomly used in practice. The aim of this paper is to provide a unified
and comparative review of the existing tests in a hope to promote further research,
software development and application.
Consider the univariate nonparametric regression model

where y; is the response, ¢; is the random error and ¢; “ N (0,0%). f is assumed to
be in an infinite dimensional model space to be specified later.

One of the most useful applications of the nonparametric regression models is to
check or suggest a parametric model. Parametric models, especially linear models,
are preferred in practice because of their simplicity and interpretability. Diagnostic
investigations of the departures from these parametric assumptions is necessary to
avoid misleading results. If some specific alternative form is suspected, a simple
lack of fit test can be performed. But this kind of test would not perform well
for other departures from the parametric model, especially those orthogonal to the
suspected alternative. For example, to detect departure from a linear model, one
may consider a quadratic polynomial as the alternative. Then higher order departure
may be missed. Tests performing well for general departures in a large model space
are desired.

Most existing methods for testing general departures from a parametric model
are based on nonparametric regression models such as kernel estimation (Azzalini
and Bowman 1993), local polynomial regression (Cleveland and Devlin 1988) and
smoothing spline. In this paper we focus on the tests based on smoothing spline
models. The connection between smoothing spline models and Bayesian models (or
mixed effects models) simplifies certain hypothesis tests. Also, the general form of
smoothing spline models allows us to consider many different situations in a unified
fashion.

Cox et al. (1988) showed that for the hypothesis of f being a polynomial of degree
m (m > 0) versus f being smooth, there is no uniformly most powerful (UMP)
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test. Thus they proposed to use a locally most powerfully (LMP) test. Wahba
(1990) proposed two tests based on the generalized maximum likelihood (GML) and
the generalized cross validation (GCV) scores. For non-Gaussian data, Xiang and
Wahba (1995) developed the symmetrized Kullback-Leibler (SKL) test based on the
SKL distance between the function estimated under the null hypothesis and the
function estimated under the alternative. We are going to examine the performance
of these tests for Gaussian data.

Raz (1990) developed a permutation test for the hypothesis of independence
between the response and the covariates without assuming any particular error dis-
tribution. Two generalized F' tests were mentioned in Raz (1990) in the context of
general nonparametric regression. However, no discussions about their performances
were given.

In section 2, a brief introduction to smoothing splines is given. In section 3,
we review some existing tests and develop approximations to null distributions.
We evaluate and compare these tests and approximations in section 4. Section 5
concludes with some remarks and potential research topics.

2 Smoothing spline models

In this section we briefly review smoothing spline models, their corresponding Bayesian

models and connections with linear mixed effects models. For simplicity, we limit

our discussions to polynomial splines on [0, 1]. All tests in this paper can be written

in terms of general spline models on arbitrary domains (Wahba 1990). Thus these

tests can be used to test more complicated hypothesis under general spline models.
In model (1), assume that f € W,,, where

W = {g|g, -+, g™ Y are absolutely continuous, g™ € L£,]0, 1]} .

The smoothing spline estimate of f, f,\, is the minimizer of

n 1

(= FE)P+ A [ (£ (), @
i=1

where A is a smoothing parameter which controls the trade-off between the goodness-
of-fit and smoothness of the estimate.

Let y = (y1, -, un), &,(t) = " /(v -1, v =1,---,m, and Rl(s,t) =
oot (¢ — uym =1t — uymLdu/((m — 1)1)2. Denote Thum = {¢,(t:)}7,™, and
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Soxn = {R(t;,t;)}7,_,. Kimeldorf and Wahba (1971) showed that the solution

i=1j=1-
to (2) has the form

fi0) = S o) + S aR (1)

=1

where ¢ = (¢1,--+,¢,) and d = (dy,- -+, d,,)" are solutions to

Lo ) (2)=(3) ®

The system (3) is definite when T is of full column rank, which we assume to be
true in this paper. Thus f\ = (f\(t1), -, fa(tn)) = Td 4+ Xc is always unique. Let

T = (@ Qﬂ(?)

be the QR decomposition of 7. One may check that f, is a linear function of y:
f\ = A(N)y, where A()) is the “hat” matrix. It can be verified that

AN = I = nAQ2(Q3(E + nA)Q2) ' Qs (4)

Note that A(\) is symmetric but usually not idempotent.
The smoothing spline estimate can be obtained from the Bayesian point of view.
Assume a prior for f as

F) = 32 0,6,(0) + B2X (1),

where 8 = (0y,---,0,) ~ N(0,al), a and b are positive constants, and X (t) is a zero
mean Gaussian stochastic process independent of 8 with covariance EX (s)X (t) =
Rl(s,1).

Consider

yzzF(tz)_'_El; Z:177n7 tle[oal]v (5)
where € = (€1, -+, €,) ~ N(0,02I) and is independent of F'. Wahba (1990) showed
that with A\ = o%/nb,

Tim B(F(t)ly) = fi(t).
With a — oo, diffuse priors are assumed for the coefficients of the polynomials of
degree less than m.



Smoothing spline models can also be connected to certain linear mixed effects
models (LMM). Consider the following LMM

y=Td+ u+e, (6)

where d are the fixed effects, u are random effects and u ~ N(0,bY), € are random
errors and € ~ N(0,0%I), and u and € are independent. Wang (1998a) showed that
the smoothing spline estimate evaluated at the design points, fA, is the same as the
best linear unbiased prediction (BLUP) estimate in (6).

3 Existing test methods

Let Ho = span{¢,,v =1,---,m}. Often we are interested in testing the hypothesis
that f is a polynomial of degree m — 1 or less

HO:fEH(), HlifEWmandf¢Ho. (7)

It is easy to see that A = oo in (2), or equivalently b = 0 in the corresponding
Bayesian and mixed effects models, leads to f € Hy. Thus the hypothesis (7) can
be re-expressed as

Hp: A = o0, Hy: A < oo, (8)

or

Hy:b=0, H;:b>0. (9)

Notice that y ~ N(0,aTT’ + bX + ¢*I) under the Bayesian model (5) and y ~
N(Td,b% + 02I) under the mixed effects model (6). Let w = Q,'y, then w ~
N(0,bQ5%Q2 + 1) under both the mixed effects and Bayesian models. It is clear
that the transformation @,y eliminates contribution from the model under the null
hypothesis. Thus w reflects signals, if any, from W,, © H,.

Let the spectral decomposition of Q53Qs be UDU’, where D = diag(\,,,v =
1,---,n—m), and A\,,’s are the eigenvalues of ()4,3(), ordered so that Ay, > Ao, >
«+ > Ay n. Let z = U'w, then

z ~ N(0,bD + o*I). (10)

Note that z,, the vth component of z, is the projection of w in the direction of the
vth column (eigenvector) of U (Q5XQ:2).



3.1 LMP tests

Cox et al. (1988) showed that the UMP test does not exist for hypothesis (9) under
model (5). When o2 is known, they proposed a LMP test which rejects the null
hypothesis for large values of

tLMp = Z )\l,nzz. (11)

v=1

When o2 is unknown they proposed an approximate LMP which rejects the null
hypothesis for large values of

tappraip = D Amz] D % (12)
v=1 v=1

Let (b, 02|z) denote the likelihood of b and o2 given z. Then

9 n— 1 1" 22
I(b,o°|z) = — 10g(27r — = Z log(bA,,, + o )—5 > B
v=1 v=1 vn

Note that z is based on an orthogonal contrast of the original observations which
eliminates the fixed effects. Thus (b, 0?|z) is the so called restricted likelihood in
the mixed effects literature.

It is not difficult to check that the LMP test is equivalent to the score test (Cox
and Hinkley 1974) defined by

Zfscore = Ub(oa 02)/ Ibb(0> 02)7 (13)

where Uy (b, 0?) is the efficient score defined as 9l(b,0%|z)/0b and I;(b,?) is the
Fisher information of b. When it is unknown, o2 can be replaced by the MLE under
the null hypothesis (9), 6% = S"'_1"22/(n — m), which leads to the approximate
LMP test.

The test statistic tqpprmp does not follow a simple distribution under Hy. It
is straightforward to simulate the null distribution (Wahba 1990). We can also
approximate its null distribution as follows. First, the numerator can be approx-
1mated using Satterthwaite method by dyx3, with dy = Y0-1" A2 />0~ A, and

= (X027 An)?/ 027 A2 . The denominator follows the x2_,  distribution. Then

o=l Ay / (dads) __n-m
S z2/(n—m) YT A, appLM P
6

FappLMP (14)



is approximated by an F' distribution with degrees of freedom d; and n — m. This
approximation is compared with the simulated null distribution in Section 5. The
p-value, P(tapprarr > 1000 0p) = P02 (Avn — t30s Larp) ze > 0), can be calculated

numerically using the algorithm in Davies (1980). We find that this numerical
method is very fast and agrees with the Monte Carlo method.

3.2 GML test

Since b = 02 /n), the log likelihood from z can be re-expressed as

1 1n—m 1n m 22
(A blz) = —=(n—m)logh— = log(A,n A)— — —_— ,
(i) = (= m)logb = 5 S log(hn + 1) = 3 3 2 C

where C' is a constant.
For fixed A, maximizing the log likelihood with respect to b, we have

—|—tw

by = Z
Then the profiled likelihood of A is

n—m

D 22/()\m+n)\) 7
2 Ay + nA) " 7om ’

L(A|z) = exp(I(\, by[z)) = ( (15)
where (] is a constant.

The generalized maximum likelihood (GML) estimate of A, S\GML, is the maxi-
mizer of (15). Wahba (1990) defined the GML test statistic for the hypothesis (8)
as

L(S\GML’Z)‘|M ZV 1 2’2/()\1’" +n5\GML) 1 (16)

L(oo|z) T2 (A + nGarr) 7 et 22
The null hypothesis is rejected when tgpy, is too small.

It is difficult to derive the null distribution for t5y,r,. Standard theory for likeli-
hood ratio tests does not apply because the parameter is on the boundary under the

tamr = [

null hypothesis. The non-standard asymptotic theory developed by Self and Liang
(1987), which states that —(n — m)log g has an asymptotic null distribution of
a 50:50 mixture of x? and x3, does not apply either because of the lack of replicated
observations. Crainiceanu, Ruppert and Vogelsang (2002) reported the same finding
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for P-spline models. In a subsequent paper, Crainiceanu and Ruppert (2002) provide
the asymptotic distributions of likelihood ratio tests for linear mixed models. Monte
Carlo methods are still needed to obtain quantiles of these asymptotic distributions.

The direct Monte Carlo method simulates [ samples of —(n —m)logtgar, under
the null hypothesis. Denote —(n — m)logtgy based on data as xp and suppose
that x¢p > 0. Then the true p-value is

p = P(—(n—m)logtenr > xo|Ho).

We generate [ samples of z from N(0, 1) (without loss of generality, we set 02 = 1),
calculate Agysr, for each sample, and construct gy, for each sample. Let xq,-- -, x4
denote the [ samples of —(n — m)logtgar. Then p is estimated by

l
Z[ I1>LC0

=1

where (-) is the indicator function. Then Ep = p and Var(p) = p(1 — p)/l. This
approach usually requires a very large [. For example, to have margin of error
2,/Var(p) bounded by 0.005, [ has to be at least 40000. Note that Ay is computed
for each sample. Therefore, this approach is computationally intensive.

NlH

Our simulation results suggest that the null distribution of —(n — m)logtamr
can be well approximated by a mixture of x? and x2, denoted by rx2 + (1 — r)x3.
However, the ratio r is not fixed. It depends on the order m, sample size n and the
design points t;’s. Thus we propose an alternative method that estimates the ratio
r first and then calculates the p-value based on the mixture of 7 and x2 with the
estimated r. The motivation behind this approach is that a relatively small sample
size k is required to estimate r.

We now compare sample sizes required by these two approaches. For the alter-
native approach, let !, - - -, x} be k random samples of —(n—m)logtga under the
null hypothesis. We estimate r by

Then E7 =1 and Var(r) = r(1 — r)/k The p-value is estimated by

?r\H

p=(1=7)P(xi > o).

Assuming the null distribution of non-zero —(n —m) log tgarr, is exactly x?, we have

Ep=pand Var(p) = rp*/(k(1 —r)).



For Var(p) = Var(p), we need k = rpl/((1 —r)(1 — p)). Based on our simula-
tions with m = 2, n = 100 and a uniform design in [0, 1], r is usually around 0.7.
It is easy to check that for p = 0.05 and » = 0.7, we have k = 0.12[. Thus about
k = 5000 samples are needed for the alternative method if [ = 40000.

Simulation results in Section 5 indicate approximations based on the alternative
approach are accurate when sample size is large.

3.3 F-type tests

For the hypothesis (7) under model (1), the usual F test statistic will not follow an
F distribution because the hat matrix A(\) is not idempotent. Two F-type tests
were mentioned in Raz (1990) for the following hypothesis

Hy : f = constant, H; : f # constant (17)

in the context of general nonparametric regressions. They were used to derive the
permutation test and their performances were not investigated. In this section, we
first extend these two F-type statistics for our hypothesis (7). Then we compare
them with the generalized cross validation (GCV) test proposed in Wahba (1990)
and the SKL test proposed by Xiang and Wahba (1995).

Let fg be the maximum likelihood estimate of the regression function under the
null model. Then fy = Hy, where fy = (fo(t1),- -, fo(tn)) and H = T(T'T) T’
Note that H is an idempotent hat matrix and A(A\)H = HA(\) = H.

Define . .

S1o= Xin(h(t) - fo(t)?,
Sy = XiLi(yi — alti))
Sy = Xii(yi — fo(ti))

where S measures the difference between fo and f A, Do is the residual sum of squares

(18)

2
)
2
)

under H; and Sj3 is the residual sum of squares under Hy.

In terms of the hat matrices, (18) can be re-expressed as S; = y'(A(\) — H)?y,

So=y'(I — A(\))%*y and S3 =y'(I — H)y. In terms of z, we have

_ n—m/ Avn/nA) \2 .2 __ n—m 22
S1 o= v=1 <1+/\V,12/n/\> z, =5+ 55— 2307 T+ Aon/nA?

S = XU o (19)

— n—m .2
S3 - Zl[:l 21/’

Contrary to the parametric case, the equality S; + Sy = S35 usually does not
hold. Similar to Raz (1990), we consider two generalizations of the standard F' test
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statistic
P = (n—01)S1/((g1 —m)(S3 — S1)) with g1 = tr(A*(N)), (20)
and
Fy = gi(Ss — S)/((n — g; —m)Ss) with g = tr((I — AN))2). (1)

When A is fixed, the permutation test statistic in Raz (1990), (n — 1)S;/Ss, is
equivalent to F;. Cantoni and Hastie (2000) considered a different hypothesis where
A (b) was fixed under the alternative. Their F' test statistic is equivalent to Fy when
o? is estimated under their alternative hypothesis. They used numerical methods for
linear combinations of y? variables to compute p-values (Davies 1980). This method
can not be used here except for the LMP test because the smoothing parameters are
not fixed under the alternative hypothesis. In Section 5, we are going to investigate
the performances of F; and F, tests with a data-based choice of \.

When A\ is estimated from data, the null distributions of F} and F5, are rather
complicated and no approximation is available. When A is fixed, we can use the
Satterthwaite method to approximate the numerator and the denominator of the
test statistics and then use F' distributions to approximate the null distributions.
We note that S3 > Sy and S3 > Sy, so F; and F; are guaranteed to be nonnegative.
Simple calculation shows that F} can be approximated by an F' distribution with
degrees of freedom 2/ and 62/60y, where p; = tr((A(\) — H)?) = g1 — m and
po = tr((AN) — H)Y), 0, = tr((I — H) — (A(\) — H)?) =n — g, and 0y = tr((({ —
H)—(AN)—H)?)?) = tr((I—A%(\))?). F, can be approximated by an F' distribution
with degrees of freedom v? /vy and 62 /0o, where vy = tr((I — H) — (I — A(M\))?) =
n—gt—mand vy, =tr((I — H) — (I — A(\))?)?), 6, = tr((I — A(N))?) = g} and
8y = tr((I — A(N))*). X is fixed in above approximations. The performances of the
F approximations are examined in Section 5 for several values of A\. There is no
practical guidance on how to select A. Eubank and Spiegelman (1990) considered
tests based on cubic smoothing splines with fixed A. They pointed out that the
powers of their test are relatively insensitive to the choice of \.

3.3.1 The SKL test

For non-Gaussian data, Xiang and Wahba (1995) proposed the SKL test based on
the symmetrized Kullback-Leibler distance between fA and fo

1 0 A,\
tswer = 1, 1o j;» ; Eﬁaog@;»].
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For Gaussian data, it reduces to
1 A 1
t = — — folP = —5.. 22
sk = 5| h = follF = 581 (22)

When o? is estimated by S3/(n —m), tsxr = (n —m)S;/nSs. Thus tggy is
equivalent to F; for fixed A\. The performance of the SKL test is compared with
F-type tests and other tests in Section 5 with A estimated from data.

3.3.2 GCV test
GCV test is based on the following GCV score (Wahba 1990)

V() = nll(I = ANy [*/(tr(I = A(N))*.

The GCV estimate of A, S\GCV, is the minimizer of V().
Wahba (1990) defined the GCV test statistic as

2 Z?;;;n Zz%/(l + )\un/nS\GC\/)Q 1
[0 1 /(1 + Apn/nAgov )2 201" 21

B V(Aeov) B
tGCV— W = (n—m)

Hj is rejected when tgoy is too small. It is easily seen that tgoy is equivalent to
Fy if the smoothing parameter is fixed instead of being estimated from the GCV
score. Again, the performance of the GCV test is compared with F-type tests and
the other tests in Section 5 with A estimated from data.

4 An overall comparison

All tests except F and F, can be written in the form >"_1" a,22/ > "_1" 22, where
coefficients for the approximate LMP, GML, GCV and SKL tests are alMfP =
Aoy aGME = T2 A+ 1haarn) ™7/ (Aon + ndaur), a8 = (n — m)2/[(1 +
Aon/PAcov )2 S 1 (14 A /nAcer)?] and aS5E = (n — m)(An/nA)2/[0(1 4+ A /nA)?]
with \ being an estimate of .

GML 411 oGCV

v 14

Note that aZ™? and a5%L are decreasing while a are increasing.
This is because the rejection regions for the approximate LMP and SKL tests are
on the right hand side while the rejection regions of the GML and GCV tests are
on the left hand side. Notice that tgy, < 1 and tgey < 1. For comparison, we
use the equivalent test statistics 1 — tgy, and 1 — tgeoy as the GML and GCV test

statistics in this section.
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The differences between the approximate LMP, GML, GCV and SKL lie in the
differences between weights. The weights depend on the smoothing kernel matrix
Y2, the design matrix 7" and the smoothing parameter A except for the approximate
LMP test. We now compare these weights for a cubic smoothing spline with n = 100
and a uniform design in [0,1]. Note that a,’s are not directly comparable because
their scales are different and the corresponding statistics have different distributions.
In the following, we scale the four null test statistics so that they have the same 95%
quantiles. We first generate 40000 sets of z under the null hypothesis. Note that all
the test statistics are transformation invariant with respect to o2, so it is taken as 1

in the simulation. For each set of z, the smoothing parameter S\GML and ;\GCV are

SKL
v

calculated and \ in a is replaced by ;\ch. Based on 40000 null test statistics of
ZfappLMp, 1_tGML7 1_tGCV and tSKL, we find that tappLMP7 0-464(1_tGML), 0.199(1—
teov) and 0.083tgkr have approximately the same 95% quantiles. Therefore we
define wiMP = oLMP yGML — () 464(1 — aSML), WS = 0.199(1 — aS¢Y) and

wSKL = 0.083a55L. All the four tests are equivalent to "7 w, 22/ " 22, where

LMP , GML , SKL Gev
14 wV

w, denotes one of the w; ™" w and w;“" . Let w, be the average of the

40000 realizations of w,. Note that wEM? = wIMP gince wL™¥ does not depend on
the smoothing parameter \.

In Figure 1 we show the comparison of w, for v = 1,---,10. Except for the
SKL test, the weights for all tests decrease very quickly. The SKL test puts almost
equal weights on all z,’s. Although not shown in Figure 1, the weights of the SKL
test are larger than those of other tests when v > 15. We observe that on average,
the approximate LMP test has the largest weight on z;. Thus the LMP is more
powerful in the direction of the first column of U, which is the first eigenvector of
QQ2'YQ5. The localness is by no means defined in terms of the distance in W,, or
the Lo distance. It is easy to find two directions, such as sin(27t) and cos(27t),
such that powers are very different even when they have the same distances to the
null space. The GCV test has the largest weights on z,,2 < v < 10. Thus it is
more sensitive to changes in these directions. The GML is a compromise between
the LMP and the GCV tests.

Figure 2 plots the first four columns of U. If we consider the number of modes
as the frequency of a function, then the columns of U represent functions with
increasing frequencies. Thus we can expect that the approximate LMP test is the
most powerful when the true function has frequency 1 and the GCV test is more
powerful for higher frequency functions. These observations are confirmed by our
simulation results in Section 5. In theory, one can construct new tests in the form

12



0.20
Il

[Te]
\—! -
o
O —— LMPtest
4 D GML test
+ ---- GCV test
X~ ——- SKL test

average weights
0.10
Il

n
Q .
o
“*“‘**~<+<»~ -
] T S N T
| 0 TR
; ) 5 8 10

Index

Figure 1: Weight comparisons among the approximate LMP, GML, SKL and GCV
tests.

naw, 22/ ST 22 with weights chosen to achieve specific purposes. We have also
studied weights for other smoothing spline models such as the linear spline and the
periodic spline. Results remain the same.

5 Simulations

Wahba (1990) conducted a small scale simulation to compare the LMP, GML and
GCV tests. Since data were generated from the stochastic Bayesian model (5), it was
not clear if these results hold when data are generated from the deterministic model
(1). In this section, we conduct simulations to evaluate and compare the relative
powers of the LMP, GML, GCV, F;, F; and SKL tests. Cubic splines (m=2) are
used throughout this section.
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Figure 2: The first four columns of the U matrix.

5.1 Power comparisons

We conduct three simulations to compare powers of these tests. 100 observations
were generated from model (1) with the following three f functions:

ft)=1+t+at? (23)
f(t) =1+t+3a(t—0.5)3 (24)
f(t) =1+t + V2acos(6mt). (25)

The first function is close to the first eigenvector, the second function is close to the
second eigenvector and the third function is a high frequency function. The design
points are ¢; = (i — 1)/99,i = 1,---,100. We use ¢; 5 N(0,0.22) for the first two
models and ¢; %S N(0,1) for the last one. For (23), a takes one of the following five
values: 0, 0.2, 0.5, 0.7 and 1. For (24), a takes one of the following four values: 0,

14



0.5, 1 and 1.3. For (25), a takes one of the following four values: 0, 0.3, 0.5 and 1.
For all three models, we are testing the hypothesis (7) with m = 2.

We repeat each setting 1000 times. The null distributions are generated by the
Monte Carlo method described in Section 4 with simulation sample size 40000. The
smoothing parameters in the test statistics are estimated for each simulation sample.
The proportion of rejections with significance level 0.05 for each test is obtained by

counting the percentage of rejection in the 1000 repetitions. Results are shown in
Tables 1, 2 and 3.

a=0 | a=0.2 | a=0.5 | a=0.7 | a=1
LMP test | 0.055 | 0.103 | 0.483 | 0.759 | 0.978
GML test | 0.051 | 0.093 | 0.454 | 0.734 | 0.969
GCV test | 0.051 | 0.083 | 0.325 | 0.582 | 0.9
Fy test | 0.052 | 0.102 | 0.441 | 0.702 | 0.931
F5 test [ 0.049 | 0.1 0.436 0.7 10.934
SKL test | 0.049 | 0.047 | 0.104 | 0.245 | 0.554

Table 1: Proportion of rejections in 1,000 replications under model (23).

a=0 | a=0.5| a=1.0 | a=1.3
LMP test | 0.049 | 0.070 | 0.096 | 0.136
GML test | 0.048 | 0.165 | 0.538 | 0.826
GCV test | 0.048 | 0.161 | 0.553 | 0.840

Fy test | 0.048 | 0.118 | 0.425 | 0.720

F5 test | 0.044 | 0.155 | 0.507 | 0.806
SKL test | 0.041 | 0.080 | 0.261 | 0.525

Table 2: Proportion of rejections in 1,000 replications under model (24).

Generally speaking, all tests hold their levels properly. As expected from dis-
cussions in Section 4, the approximate LMP test is the best under model (23) but
the worst under models (24) and (25). This confirms that the approximate LMP
test is the most powerful only in the direction of the first eigenvector. The GML
test performs well for low frequency functions (models (23) and (24)). The lack of
power under model (25) when a = 0.3 and a = 0.5 is caused by a combination of
bad choices of smoothing parameters (GML method tends to oversmooth in these
cases) and small weights of the GML test for higher frequency functions. The GCV

15



a=0 | a=0.3 | a=0.5 | a=1.0
LMP test | 0.053 | 0.054 | 0.058 | 0.047
GML test | 0.054 | 0.094 | 0.229 | 0.985
GCV test | 0.055 | 0.362 | 0.872 | 1.000

Fy test | 0.052 | 0.076 | 0.483 | 1.000

F5 test | 0.053 | 0.161 | 0.699 | 1.000
SKL test | 0.045 | 0.327 | 0.849 | 1.000

Table 3: Proportion of rejections in 1,000 replications under model (25).

method has similar performance as the GML test under model (24) and is the best
under model (25), again as expected. The F} and F, tests perform similarly as the
GML test. The SKL test lacks power to detect lower frequency functions. None of
these tests performs consistently well for all simulation settings. The best method to
use in practice depends on the shape of the true function. To detect departure in the
form of the first eigenvector of U, the approximate LMP method is recommended.
To detect low-frequency departure, the GML method is recommended. To detect
departure of higher frequencies, the GCV method is recommended.

Simulations are also conducted for other functions and spline models. Results
are similar.

5.2 Approximations to null distributions

Regarding the Monte Carlo null distributions as the truth, we now investigate ac-
curacy of various approximations proposed in this paper. We consider two sample
sizes, 100 and 200, with design points evenly spaced in [0, 1]. Monte Carlo null dis-
tributions are generated as described in Section 4 with simulation size 40000. Figure
3 shows QQplots of the Monte Carlo null distributions of F,,,rap defined in (14)
against their approximate F' distributions with degrees of freedom d; and n — m.
The approximations are good except in the tail of the distribution with sample size
100.

In Figure 4, we compare the approximation based on rx2 + (1 — r)x? to the
Monte Carlo null distribution of —(n — m)logtgar, where tay is defined in (16).
The estimates of r, 7, are obtained by simulating 5000 of —(n — m) logtgasr, under
the null hypothesis and counting the proportion of zeros out of the 5000. Again, the
approximation is good for sample size 200.
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Figure 3: QQplot of quantiles of the F' distribution with degrees of freedom d; and
n — m against quantiles of the Monte Carlo null distribution of Fip,rap in (14).
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Figure 4: QQplot of quantiles of the rx3 + (1 — r)x? distribution against quantiles
of the Monte Carlo null distribution of —(n —m)logtar.

To further assess the accuracy of these approximations, we repeat the power
calculations for the two tests under model (23) in Section 5.1 using approximate null
distributions. Table 4 shows the results. We see again that both approximations
work reasonably well for sample size 200. For sample size 100, the levels are off.
Therefore, the Monte Carlo method is recommended when the sample size is small.

We also examined the F' approximations to the null distributions of the F; and
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size | null a=0 | a=0.2 | a=0.5 | a=0.7 | a=1

100 simu | 0.055 | 0.103 | 0.483 | 0.759 | 0.978

LMP approx | 0.044 | 0.098 | 0.454 | 0.713 | 0.943
900 simu | 0.047 | 0.392 | 0.991 1 1
approx | 0.046 | 0.38 0.99 1 1

100 simu | 0.051 | 0.093 | 0.454 | 0.734 | 0.969

GML approx | 0.041 | 0.087 | 0.395 | 0.673 | 0.94

900 simu | 0.044 | 0.156 | 0.704 | 0.946 | 1.000

approx | 0.040 | 0.146 | 0.697 | 0.938 | 1.000

Table 4: Comparison of power calculations based on simulated null distributions
(denoted as “simul”) and approximated distributions (denoted as “approx”). For
each test, two sample sizes, n = 100 and n = 200, are used.

F; statistics. Note that A is fixed in these approximations. In Figure 5, for A =
0.01,0.001, 0.0001, 0.00001 and n = 100, we show the QQplots of the F' distributions
with degrees of freedom v /vy and §? /0, against the Monte Carlo null distribution
of F». They show good approximations for different \. The F approximation to the
null distribution of the Fj statistic is also examined. The plots are very similar to
those in Figure 5.

5.3 Robustness of the tests

The approximate LMP, GML and SKL tests are derived based on the assumption
that observations follow iid normal distributions. To check the robustness of the
tests to the iid normal assumption, we generate observations from

yi = 1+ t; + at; exp(—2t;) + €, 1=1,---,100, (26)

where t; = (i — 1)/99. We consider four choices of a, 0, 0.1, 0.3 and 0.5, and five
choices of random errors: ¢ ~ N(0,0.22), ¢ “ t; (t distribution with 3 degrees
of freedom), ¢; “¢ 50:50 mixture of N(—2,22) and N(2,1), ¢ ~ AR(1) with au-
toregression coefficient 0.25, and € ~ N (0, W) where W is a diagonal matrix with
diagonal elements evenly spaced between 0.04 and 0.22. Data are scaled to match
variances. For each setting, we repeat the simulation 1000 times. Null distributions
are calculated by Monte Carlo method.

Table 5 shows that all tests hold the levels except when random errors are corre-

lated. The powers are similar when random errors are from iid distributions. When
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LMP [GML|[GCV] F | F [ SKL
N(0,0.22) | 0.049 | 0.047 | 0.048 | 0.047 | 0.046 | 0.052

ts 0.052 | 0.058 | 0.043 | 0.053 | 0.051 | 0.037
a=0 | Mixture | 0.047 | 0.049 | 0.048 [ 0.047 | 0.050 | 0.042
AR(1) [0.128 [ 0.176 | 0.540 | 0.089 | 0.147 | 0.574
N(0,W) ]0.055 ] 0.055 [ 0.051 | 0.056 | 0.056 | 0.037
N(0,0.22) | 0.063 | 0.064 | 0.061 | 0.075 | 0.071 | 0.045

ts 0.090 | 0.084 | 0.069 | 0.085 | 0.080 | 0.042
a=0.1 | Mixture | 0.073 | 0.083 | 0.085 | 0.082 | 0.087 | 0.065
AR(1) [0.110 [ 0.173 [ 0.498 [ 0.090 | 0.149 | 0.545
N(0,W) |0.041 | 0.047 [ 0.062 | 0.062 | 0.046 | 0.063
N(0,0.2%) [ 0.134 | 0.128 | 0.102 | 0.120 | 0.115 | 0.049

ts 0.148 | 0.144 | 0.094 | 0.138 | 0.134 | 0.042
a=0.3 | Mixture | 0.138 | 0.135 | 0.108 | 0.132 | 0.131 | 0.066
AR(1) ]0.168 | 0.219 | 0.550 | 0.092 | 0.175 | 0.595
N(0,W) [0.069 | 0.067 [ 0.064 | 0.062 | 0.063 | 0.054
N(0,0.22) | 0.417 | 0.398 | 0.289 | 0.403 | 0.393 | 0.095

ts 0.453 | 0.434 | 0.335 | 0.421 | 0.409 | 0.114
a=0.5 | Mixture | 0.414 | 0.403 | 0.300 | 0.385 | 0.378 | 0.107
AR(1) [0.2127]0.262 [ 0.553 | 0.130 | 0.185 | 0.587
N(0,W) |0.104 [ 0.103 [ 0.090 | 0.110 | 0.106 | 0.069

Table 5: Proportion of rejections in 1,000 replications. Random errors are generated
from independent N (0, 0.22), ¢ distribution, mixture of normal distributions, AR(1)
process and N (0, ).
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Figure 5: QQplots of quantiles of the F' approximations against the quantiles of the
Monte Carlo null distributions of Fj.

random errors are from N(0,W), the powers are significantly lower than those in
the iid cases. The comparative results of different tests remain the same. We con-
clude that the tests are quite robust to the violation of the normality assumption,
but not to the independence assumption. For independent data with heterogeneous
variances, the tests can approximately maintain their levels but lack power. We also
conducted simulations under settings as in Section 5.1. Results remain the same.
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6 Discussion

The connection between smoothing spline models and the Bayesian models (the
mixed effects models) transfers the hypothesis on parametric regression to a much
simpler hypothesis on a variance component. The approximate LMP, GML and
GCV tests derived from the Bayesian model (or the mixed effect model) work well
under the deterministic models. The good properties of the tests make them desir-
able for more complicated models. The hypothesis (7) can be written more generally
as

Ho:fGMo, lefE./\/llandfgéMo,

where M, is the model space under the null hypothesis, and M is a bigger model
space which contains a substantially large family of plausible functions. Mg could
be a linear or nonlinear parametric model, or a simple nonparametric model. For
example, to test a nonlinear regression model My, one can use nonlinear partial
splines (Wahba 1990) or nonlinear nonparametric regression models (Ke and Wang
2002) as M. To test an additive model M, (Hastie and Tibshirani 1990), one can
use SS ANOVA models (Wahba 1990) as M, and test interaction components equal
zero. This approach can also be employed to test the functional form of fixed effects
in a mixed effects model. For example, to test linear mixed effects models, one
may use the semi-parametric mixed effects models in Wang (1998b) as M. To test
nonlinear mixed effects models, one may use the semi-parametric nonlinear mixed
effects models in Ke and Wang (2001) as M;. Another direction is to extend cur-
rent test methods for non-Gaussian data, which will allow us to test the generalized
linear models (McCullagh and Nelder 1989), the generalized additive models (Hastie
and Tibshirani 1990) and the generalized linear mixed effects models (Breslow and
Clayton 1993). All current methods are sensitive to the independence assumption.
Thus new methods need to be developed for correlated data. Some research has
been done in these directions. Guo (2001) generalized the GML test to the mixed
effect SS ANOVA models. Zhang and Lin (2002) generalized the score test, which
is equivalent to the approximate LMP test, to the semiparametric additive mixed
models with non-Gaussian data. The SKL test was initially developed for smoothing
spline models with non-Gaussian data by Xiang and Wahba (1995). These gener-
alizations all showed good performances. We are currently working on extensions
of the approximate LMP, GML and GCV tests for SS ANOVA model with non-
Gaussian data. Preliminary results are encouraging. Tests for more complicated
models as described above will be pursued in the future.
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