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Abstract: We study Bayesian quickest detection problems with serrsays An underlying signal is assumed to
gradually propagate through a network of several sens@ygering a cascade of inter-dependent change-points. The
aim of the decision-maker is to centrally fuse all availabfermation to find an optimal detection rule that minimizes
Bayes risk. We develop a tractable continuous-time fortianaof this problem focusing on the case of sensors col-
lecting point process observations and monitoring theltieaguchanges in intensity and type of observed events. Our
approach uses methods of nonlinear filtering and optimglpstgy and lends itself to an efficient numerical scheme
that combines patrticle filtering with Monte Carlo based apggh to dynamic programming. The developed models

and algorithms are illustrated with plenty of numericalmdes.
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1. INTRODUCTION

Quickest detection of signal changes is an important probiea variety of disciplines ranging from bio-
surveillance to network communications. In a common sgttaeveral sensors are arranged in a specified
sensor topology and monitor for a signal that may arise irgmneof interest. With this physical layout, the
signal graduallypropagateghrough space, triggering distinct change-points as ithregs each sensor site.
The task of the sensors is to fuse the sequentially collénfedmation in order to detect the change-points

as quickly as possible while controlling for probability fafse alarms.
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A mechanistic description of a sequence of such disordeyshmaiven by specifying the signal origin,
start time, propagation dynamics and impact on sensor ddtarnatively, a purely statistical description
can be made through specifying the relationship betweerutiderlying change-points. In either case,
the information fusion is fundamentally driven by the degemce structure of the change-points and the
induced correlation among sensor observations. As a réselassociated detection problem is intrinsically
multi-variate and much more complex than in the traditigiagle change-point models.

Quickest detection problems have been extensively ardliyrzé¢he past fifty years under a variety of
probabilistic assumptions, including min-max, Bayesiad ather settings, see e.g. the recent survey of
Polunchenko and Tartakovsky (2012). In particular, optidetection with multiple sensors was treated
among others in Bayraktar and Poor (2008), Dayanik et aDgB@@), Tartakovsky et al. (2006). However,
nearly all existing analysis is limited to the case of an tamh change-point across all observation pro-
cesses. This assumption rules out consideration of sepologies where the signal physically propagates
through the sensor array. Optimality properties of dedaatules such as CUSUM or Shiryaev-Roberts have
been thoroughly studied in a variety of single change-paiatiels, see for instance Feinberg and Shiryaev
(2006), Moustakides (2004), Pollak and Tartakovsky (2009tontrast, the case of multiple change-points
has been considered only very recently. The influential vebfRaghavan and Veeravalli (2010) investigated
propagating change-points, but only under a restrictivekidldan mechanism with a known propagation or-
der. Moreover, Raghavan and Veeravalli (2010) focused emslymptotic Bayesian solution which admits
a one-dimensional sufficient statistic and a simple thrgsswategy. While theoretically convenient, these
features cannot be maintained in realistic sensor netwoFkem a different direction, Hadjiliadis et al.
(2009a) considered detection of the first disorder ii-@limensional min-max setting, establishing asymp-
totic optimality of the multi-chart CUSUM rule as the prolidlp of false alarms vanishes. In this paper,
our aim is to construct the exact Bayesian optimal solutiather than seeking other (asymptotic) notions
of optimality. Thus, we focus on numerical approximatiortled non-asymptotic optimal detection policy

while maintaining as general a framewaork as possible.

Biosurveillance Application

Our main motivation for sensor array modeling arises froosbiveillance applications. The aim of bio-
surveillance is to monitor a range of prediagnostic and rbatic data for the purpose of enhancing the
ability of the public health infrastructure to detect, istigate, and respond to disease outbreaks. A typi-
cal example involves influenza surveillance in order to enpént timely mitigation policies for the annual

winter flu epidemics. Flu monitoring tracks the number ofaled ILI (influenza-like-iliness) cases in the



surveyed population, augmented with emergency room ylai®ratory tests, over-the-counter medication
sales, etc. This is done on a local level by the city- or coaatministered public health agencies. An
epidemic traveling wave is commonly observed for new infazestrains (Riley 2007) (for example, the
2009 H1N1 pandemic originated in Mexico in April 2009 anddyrally spread across the world over that
summer); at the same time the inherently random movemeudtsnéractions between individuals intro-
duce a high degree of stochasticity in epidemic spread. derdo localize outbreak detection, multi-site
monitoring (e.g. in several neighboring counties) is gjigradvocated. Thus, it is of great interest to effi-
ciently fuse information from multiple spatially heterog®mus surveillance sites to pinpoint epidemic onset
and pathogen properties. As noted by Raubertas (1989), @ w@¢n challenge is that “the use of spatial

information is computationally demanding”.

New Approach

Below we adopt the Bayesian formulation of quickest debectdo develop a novel sequential algorithm for
detection and identification of the unknown change-poi@sr framework relies on the optimal stopping
paradigm and allows us to efficiently obtain numerical sohg in generic models of sensor arrays. As
our main setup we consideentralized Bayesian detectiovith continuous-time observations modeled as a
point process. Use of continuous-time is not only convdaragalytically but is also more faithful for asyn-
chronous systems without a well-defined time scale. Foamt&, biosurveillance has been moving from
discrete weekly or daily data collection to real-time symdic monitoring, such as the Google FluTrends
search engine data. Real-time information is bursty andistsof discrete events that punctuate periods of
inactivity. We model such observations via a marked pointess, linking to the theory of Poisson disor-
der problems. Because the eventual numerical implementéatiin discrete time, our methods are in fact
directly applicable (with obvious modifications) also iscliete-time models.

In line with the envisioned applications, we assume cedamtdlinformation processing, with all sen-
sors continuously relaying all observations to the fusienter. The latter then aggregates these multi-
dimensional observations to infer current signal statemaakie the optimal detection decision. This situation
occurs when information transmission is cheap and therelesa hierarchy of decision making (e.g. federal
biosurveillance protocols mandated by the CDC). With lawpr sensors, such as in military applications
or wireless networks, it might be too expensive for a sersophtinually communicate, making decentral-
ized detection essential (Tartakovsky and Veeravalli 2@088, Veeravalli et al. 1993, 1994, Unnikrishnan
et al. 2011). Proposed solutions include one-shot comratiaits (Hadjiliadis et al. 2009b), asynchronous

communication protocols (Fellouris and Moustakides 20afhyl distributed algorithms without central fu-



sion (Rajagopal et al. 2010).

Compared to existing approaches, our framework removesaemportant limitations by allowing for
(i) generic signal propagation without any restrictiveussptions on network topology or ordering of the
change-points; (ii) a true Bayesian formulation withoustence of low-dimensional sufficient statistics or
independence between change-point and observatiofspfisideration of joint detection and identification
objectives; (iv) flexible model specification through a yutimulation-based implementation that requires
no intermediate analytical computations. The last poinpanticular means that the proposed algorithm
code can be easily augmented in response to a modified modés avell suited to be published as an
online package. Another benefit of our Bayesian approadteiability to simultaneously optimize multiple
objectives, such as balancing low detection delay vissadéntification of the signal type. Identification of
the signal is a common task in sensor arrays via triangulatfeensor measurements.

Summing up, our contribution is to develop a comprehensageBian formulation of the detection prob-
lem in sensor arrays which faithfully accounts for signalgargation and sensor interaction. This framework
is related to our previous work on Bayesian detection problan the context of Poisson-type observations
(Bayraktar and Ludkovski 2009, 2010, Ludkovski and Sezdr220as well as the author's computational
tools (Ludkovski 2009, 2012). The tractability and flexityilof our approach is demonstrated with several

examples in Section 6.

2. STOCHASTIC MODEL

Let (Y;) = (Y}¥) be the data streams at given sensor sites 1,2, ..., K. For instance, in the context of
biosurveillance, sites may refer to counties within a gig&te. The statistical properties of the information
received at each site undergo a transition when the sigmak&ent; the instants of disruption, henceforth

called a change-point, are denotedyk =1,..., K.

2.1. Propagation Model

A basic spatial spread of the signal can be mechanisticaffyesented by wavefrontmodel illustrated

in Figure 1. In that diagram, starting from its origin locatiO = (o', 0?) at initial epoch7, > 0, the
signal spreads outwards at constant radial velo¢jtgventually reaching the (known and fixed) sensor site
locationsAy, = (as,a}) € R2 Thus, the corresponding change-points are

10 — Al

0F .= To+inf {t > 0: |0 — Ay|| < Vt} = To + 7

k=1,...,K, (2.1)



Figure 1: Signal front propagating through space. Signal startsigino® and has constant

radial velocityV.

where|| - || is the given metric for signal propagation, e.g. the Eudliddistance irR? (see Figure 1)
or a graph distance on a network. The system state is thenmilwkx$dy thedisorder indicator process

X, = (X},..., XK) € {0,1}* which encodes the present state of the signal at each site,
XF = 1gpecyy, k=1,2,..., K. (2.2)

To lighten notation, we will alternately think céf(t) as a process on the canonical spate- {e; : k =
1,2,...,25) whereey, € R2" is a vector with zero entries everywhere except a unit aktttecoordinate,
erj = Ox;, With ¢ the Dirac delta.

These signal parameters are summarize& as (0,7;,V) € A C R4, where A is the set of all
possible signals, and are not observed. Rather, the oloserfeemation is solely based on the sensor data

so far,
Fri=0(Y,:5<t). (2.3)

It is contrasted with the full filtrationy, := F; V o(Z). Crucially, while(X,) is trivially G-adapted, it is
not measurable with respect (@;). Following the Bayesian paradigm, the parametérare treated as a

random vector with a known prior distributiof ~ 7.

Remark 2.1. The disorder proces(ﬁt) is the key system state for quickest detection. As such, onklc
omit any description of the signal primitivés and directly specify the distribution ch(t) through e.g. a
copula on the marginal disorder dat#s Indeed, the possible relative locations(6F, A;,) simply induce
an implicit relationship betweefX/)’s. We find the use of copulas less convincing and more difficul
to calibrate; moreover a copula approach typically preztudny Markovian description Qﬁt) which is

available in the mechanistic description used below.



2.2. Observations Model

A variety of formulations are possible for the dynamics oéextvations(\?t). Motivated by sensor arrays
that monitor asynchronous “lumpy” events, we model eachdinate(Y;*) via a doubly stochastic Poisson
process driven by the signal. Precisely, we assume #fétis a point process with intensity* (XF; ¢, 7).

In other words, we have that
AY = 1o dNPO(t) + 1o gy dN®Y(t),  k=1,... K, (2.4)

where (N*7(t)) are conditionally independent counting processes witbniitiesA*(j;¢, Z), j = 0,1,
whereA¥(j:t, z) are given functions. In the basic case wh&isare independent of outbreak parametérs
and oft, (N*J(t)) become Poisson processes. Note that this formulation submth the post-change and
pre-change (which is less realistic perhaps) observatianacteristics to depend on the changepoint.

As seen by the central decision-maker, the superpositiopgoty of counting processes allows to combine
all the information sources into a single doubly-stocltastarkedpoint process. Indeed, 18t = (o, vx)
be a marked point process with arrival times < 0,1 € R, and marks, € {1,2,...,K}. Theo's
aggregate all the events observed at the sensors, whileahesm identify which sensor collected thieth

event. Then (Bremaud 1981), has intensity

K
A=) AM(XFt, 2), (2.5)
k=1

and conditional mark distribution

AR 2)
zj.;l N(z75t,Z)

p(k; %1, 2) =P {W = kX, =q,00 =1, Z} (2.6)

2.3. Performance Criterion

We take the point of view of a policy maker who aims to deteghal presence in the array, i.e. timénimum
of the change-points
O :=min(',...,0%),

by raising the alarm at decision time< co. Since#* are not directly observed, we require that the decision
is based on available information, namely S, whereS denotes the set of aff-adapted stopping times.
Given Bayesian priors, the key objective of the policy makeo achieve quickest detection while main-

taining a bound on false alarm frequency. Additionally, gwdicy maker accounts for thguality of her



detection by making an announcement& R!4! at the detection date and comparing it to the true signal-
type Z. Formally, the controller wishes to minimize a weightedrage of expected (linear) detection delay
(ADD), probability of false alarms (PFA), and announcemamnbr. For concreteness, we will base our crite-
ria on the detection delay-—©)*, wherea™ := max(a, 0), the probability of the false alargr < ©}, and
the classification errof (d, Z), wheref is a given mis-identification penalty function and the amumment
d € F; is based on the observations uprtonly.

Denote by7 the distribution ofZ = (O, 7y,V) (which equivalently induces some distributiaiy on
)20). We usePz, andEz, to denote the corresponding probability measure and exfp@ct The Bayesian

quickest detection problem is to compute

- . i ot
V(ﬂ-) = Te&l‘fcllfé}_‘r E7r {(T @) + Cl{T<@} + f(d’ Z)}
= Tesi%feﬂ Ez, {/0 1{?(37&6}d3 +elig gt f(d, Z)} , (2.7)

where( = (0,0,...,0) € R¥ is the zero element iy. The first term on the right-hand-side in (2.7) is the
average detection delay, the second term is the likelihdadfase alarm given that outbreak is declared at
7, and the third term is the accuracy of identifying tgpeof the outbreak. The parameteis the tunable
penalty for false alarms; smatlwill induce aggressive detection, white— oo is the case where false

alarms are not tolerated; similarly the functigns the tunable penalty for mis-classification.

Remark 2.2. More generally, we may consider the problem of detectingtatting time of(X}), i.e.0 :=
inf{t: X, € G}, G C E. For example, the setting of (2.7) corresponds&ite: {0}¢ while G = {7 : 2% =

1} corresponds to detecting the disorder in khth channel only. Finally, we could also straightforwardly
generalize to linear combinations of objectives such ag.in)( asking the controller to choose a sequence

of pairs(7y, dy) to match somé®,’s.

If (Xt) was observed (i.eF-adapted), then the optimal detection rule would simplydie= ©, d* = Z);
the crux of the problem is therefore to construct a good apration to© using information flow( ;) only.
From a control perspective, this means that to minimize Baigk requires solving a partially observable
optimal stopping problem. Indeed, the costs in (2.7) aremaasurable with respect to the decision variables
(7,d). Accordingly, the solution approach (Peskir and Shiryd@86) is to first perforniiltering of the latent

state(it) by computing the posterior distribution
IL,(D) := P, {Xt c D\]—“t} D C {0, 1}X. (2.8)

For a Borel set, denote byM (&) the set of all probability measures supportecCbyl hen we may identify
1T, as an element aM ({0, 1}%) = Ayx == {7 € [0,1]2" : 3,7 = 1}, i.e. a(2X — 1)-dimensional

7



stochastic process on the simpl&xx . Alternatively, in terms of the model primitives we can cioles the

filter (I1;), which is a diffuse-measure-valued process\diA), such that for any Borel sé? € B(A),
I;(D) := P:{Z € D|F;}. (2.9)

An important advantage of usin@l,) over (II;) is the Markov property. Indeed, sinﬁ&t) is in general
not Markov, neither is its conditional distribution. On tb#ner hand, since is constant, the full filte(f[t)
is trivially Markov. In other words, to gain the Markov prape one must lift from the restricted filt€i1,)
to the full filter (f[t). In particular, it is immediate that one can evaluate thedtmmal probability of any

G-measurable function(z) as

fl,(g) = Ex {9(2)|F1} = /A o(=)T,(dz).

An important example which allows to project down frafp to I1; is ﬁt(l{@kgt}) = IL({X} = 1}).
Taking conditional expectations with respect(# ) in (2.7), we end up with the Bayesian performance

functional V() = inf, g Jg(7, 7) with
Jp(r;7) :=E {/O H'(s,11,) ds + H*(7,11;) | I = 7?} : (2.10)
whereH!(t,7) := 7(1;o<y) and H? optimizes over the announcemeht
H(t,7) = ci(l{o=n) + inf 7(f(d, 2)).

A Bayesian optimal detection rule* is the optimizer in (2.10) and can be viewed as the functional
mapping histories to decisions’ : F; — {stop,continue}. Because the state variable is Markov, the
detection rule is simplified to a function of the curréht This point of view highlights the key challenges
in working with (2.10), namely the need to (i) characterinel solve the evolution equations of the filter
process(f[t) and (ii) overcome the curse of dimensionality associatat afptimizing over the state space
of II,. In fact, without further assumption8l, is infinite-dimensional making” a functional on the non
locally compact spacé1(.A). Thus, a complete Bayesian solution requires considerationon-Markov
optimal stopping (if working with(Il;)) or infinite-dimensional Markov optimal stopping problenishe

resulting complexity has earned this approach the stignamalfytical and computational intractability.

3. Solution Method

In general, there are no sufficient statistics for the measatued proces(sﬁt). The only special cases we
are aware of consist of either (a) taki(ﬁt) be Markov or (b) making the suppa# of 7 to be finite. Oth-

erwise, the key to characterizir(git) are stochastic filtering techniques (Bain and Crisan 20R8@)mely,

8



(f[t) satisfies a variant of the Kushner-Stratonovich nonlindgarifig equation. These equations are typ-
ically analytically intractable, and we therefore seek euoal approximations. An efficient and flexible
approach to computing, is to apply Sequential Monte Carlo methods (SMC), also knes/particle fil-
ters, which approximatél, with an empirical particle cloud (Doucet et al. 2001). Thémmaechanism of
SMC consists of a mutation-selection procedure appliethiot@racting particle system.

In terms of the control step, since the state variabld,isanalytic characterizations, through, e.g. quasi-
variational inequalities, of the resulting value functigiir) are difficult to come by. Instead we recall the
probabilistic characterization af through its dynamic programming equations. Preciselynddfibr any

stopping times > 0 the monotone operatQf acting on a measurable test function M(.A) — R via

TNO ~ _ _
j'U('ﬁ') = HelgEfr {/ H1(3>Hs) ds + 1{T<O'}H2(7—7 HT) + 1{T>O’}U(H0)} : (3.1)
T 0 -

Then guided by the Bellman optimality principle we have that

Lemma 3.1. V(7) is the largest fixed point of smaller than/?(0, 7 ) and one can approximaté as
V=lim V,,  whereV, :=JV,1,  with Vo(7) = H?(0,7).
Moreover, the optimal stopping rule is given by
™ = inf{t : V(II,) > H?(t,11,)}, (3.2)
and can be approximated througtt = inf{t : V,,(II,)) > H?(t,1I,)}.

The optimal stopping problem in (3.1) leads to a represemaif 1 (II,) as the Snell envelope corre-
sponding to the reward functiondl (7; -) in (2.10). In turn, this gives rise to a novel approach to Ikeso
challenge (ii) through the use of Monte Carlo dynamic prograng (MCDP) methods (Egloff 2005, Lud-
kovski 2009) to solve the dynamic programming equationgiwia stochastic simulation/regression frame-
work. A simplified version of this approach was studied in kowkki (2012) for a special case of (2.7) with
a single change-poirt modulating a multivariate jump—diﬁusioh\?t). The resulting Monte Carlo algo-
rithm first uses particle filtering to obtain a high—dimem&ibapproximatior(ﬂgN)) to the true(ﬁt) with
arbitrarily small errors as the number of partics— oo, and then applies MCDP to solve the optimal
stopping problem fo(ﬂEN)). Overall, we end up with a fully simulation-based solutidritee Bayesian

formulation, which seamlessly merges SMC inference metlaodi MCDP for the optimal stopping step.

3.1. General Setup

The schematic of Figure 1 and the ensuing formulation waseador simplicity; a much more general

setup can be considered within the Bayesian paradigmfiléet: (X1,...,Xk) be a stochastic process

9



on {0,1}¥ corresponding to sensor change-point indicators, (aﬁc) be the stochastic process for ob-
servations. In addition, let the random vectorbe the collection of all relevant model parameters. Let
Hy = o((Xs, Ys), s < t) Vo(Z) be the full filtration. Then the Bayesian framework tre@Xs, Y,) as a
coupled process (note that we no longer assumeXhat o(Z)-measurable) which is to be estimated based
on observed informatiotf; only.

To wit, the evolution of the pure jump procefs is summarized by its transition timé&$ and the discrete

skeleton chairfxy),

o
X = ZXZl{Tg§t<Tg+1}> xe € {0,1}%.
=1

We assume that; andy, are described respectively through an intensity funcfipand jump distribution
v(-). A minimal requirement is thafi, ) is #-adapted and the distributionof x, is #,,_-measurable.

Depending on the actual dependence structu(é?@} three main cases can now be identified. Mechanis-
tic disorder models correspond (X;) being adeterministicfunction of Z (i.e. o(Z)-measurable) and can
be used to model a random phenomenon that propagates thitmighnsor array as in Figure 1. The case
where(Xt) is anautonomous Markoprocess (possibly in an enlarged space, to allow for tinpeddence
and self-exciting features) models the situation of an erogs epidemic process observed through con-
ditionally independentY;). Finally, the case wherg, and/or depend or(Y,) corresponds to feedback
effects where the change-points are (partially) drivenhgydbservations.

Moreover, we can also generalize to more complex obsen/atkmcesse(s?t). For example, diffusion or
jump-diffusion observations can be treated in completabl@gous manner and could be used to e.g. model
high-frequency biosurveillance data, such as search erggieries or online sales of flu medications. The
basic requirement is tractability of the conditional likelods p(Y,|X,,0 < s < ¢, Z), and conversely
of p(X;[Y,,0 < s < t,Z). These probabilities are always available in closed-fornenever(Y,) is a

marked point process, see (4.2) below. We further discuse €6 the possible setups in Section 5.

3.2. Relationship to a Markovian Model

Let us compare the setup of Figure 1 to the simplified modelrgvtiee disorder indicator proce(sit) is
directly taken to be Markov. This is the original approachRefghavan and Veeravalli (2010) and can be
viewed as a Hidden Markov model where the change-point t#fiese given in terms of hitting times of
a latent statéX,). In the case of two site& = 2, this means that the sign, = (X}, X2) € E :=
{00,01, 10,11} is an autonomous Markov chain with known generagor The disorder times ar¢* =

inf{t > 0 : X} = 1}; the observation§Y;) remain as in (2.4) and all the parameté&rs= (u;;, A*(j)) are

10



Figure 2: Evolution of the signal statX,. The corre-
Hot

sponding infinitesimal generat@ = (g;;) is given by

00 01
o X, = (X}, ) on —Ho1 — M10 Mol 10 0
0 — 101 0 H101
Q =
10 11 0 0 —Ho11  HMo11
H101
0 0 0 0

known. The resulting evolution is illustrated in Figure 2.
In this case, signal detection reduces tinde-dimensionaproblem, namely filterianit) is equivalent

to finding the posterior distribution (3-dim vectdiy = (I1%2),
Hflf2 P Pﬁo {Xt E £1€2|]:t} s Ek’ € {07 1}7

which provides a full characterization of the system stawaset. The Bayesian formulation can now be
analytically characterized (subject to verifying teclahiconditions) through e.g. quasi-variational inequal-
ities satisfied by the value function. We present an exami@eah semi-analytical approach in Section 6.1
wherell, admits explicit dynamics.

However, the assumption thaﬁt) is a finite-state Markov chain imposes severe restrictieng. Ex-
ponential inter-disorder times) in terms of calibrating tmodel. Also, unless symmetry is assumed, the
number of parameters to specify and the modulation oA by X, grows exponentially in the number of
sensorsk. In Raghavan and Veeravalli (2010) a fixed order was imposeith® relative occurrence 6f,
leading to aK -dimensional sufficient statistic. Such an assumptionesponds to knowing exactly the

identity of the first sensor to observe the disorder and ntighinrealistic in many applications.

4. NUMERICAL ALGORITHM

In this Section we propose a new method to approximate theevahction of (2.7). lllustrative examples

are then provided in Section 6.

4.1. Particle Filtering

To compute the filter (2.9) we utilize sequential Monte Cabproach to approximate, ~ fIEN ), where

the discrete measurﬁégN ) consists ofV particles,

. 1
N = W—(t);w ()82m 1 (-)- 4.1)

11



Above w"(t) € Ry are the particle weightd}/(¢) is a normalizing constant, and'(t) = (o™, 7", v")
are the particle version of all the unknown paramet&rs In other words, any posterior probability is
approximated via

- 1 -
P:{Z € D|F;} ~ 0] > w't), DCA
n:z(t)eD

The SMC algorithm is now specified through the recursive wiah of the particlegw” (t), 2" (t))N_,,
allowing for a sequential (online) update of the particlefias new information is collected. This evolution
is given by the genetic mutation-selection steps. In géndra particles are supposed to min#¢ so that
2"(t) = 2" is static. Givenz™ we can also compute the associated change-g6ififk = 1,..., K, and
the dynamic disorder indicato:‘t‘?”€ = lygni<yy. The weightsw”(t) then correspond to the likelihood
of observationY,),<; given the particle historyz"(s)),<,. Using the properties of doubly stochastic
marked point processes, we have

ur@) = ur(s) e (- [ A duer) - [T AG o), 4.2)
s k:s<o, <t

As information is collected, most particles will divergern observations and their weights will collapse
w"™(t) — 0. To avoid the resulting particle degeneracy, the SMC ampragplies sequential resampling to
multiply “good” particles, and cull poor ones, ensuringtde diversity. Thus, we introduce re-sampling
instancesRy, k = 1, ..., at which we draw (with replacement) from the atomic meaﬁ%:e)_ according to
the weightsw™ (R, —) and then reset the particle weightsut®(R;) = 1. A popular approach to select the
Ry’'sis to use the Effective Sample Size (ESS) measure of fediversity, ESS(t) = {7 (w™(1))?} !
and resample as soon as ESS drops below a thregiold inf{t > Ry, : ESS(t) < ess}.

Due to the static nature ¢f and accordingly™ above, the above resampling in fact does not fully resolve
particle degeneracy, since it will simply produce idertampiesz" of particles whose parent wa8. Thus,
ast — oo, all the particles will eventually become identical. Therficle collapse phenomenon is well-
known when using SMC for static parameter estimation arld @@ making the particles truly dynamic.

Recall that the key quantity for detection are the sensardes indicatoriﬁt) which track the change-
points§*. Consequently, we adjust our SMC algorithm to treat theiglarspecificz? (and hence:™(t))
as a dynamic process. The main idea is that while the parti€ig) still mimic Z, we assume that until
the first disorde©” := minke{l,m,K}(H"’k), 2"(t) can be resampled freely to maintain particle diversity.

Formally, at the resampling dafe. we regenerate the particle parameters according to:
2 wherez’ ~ p(Z|© > Ry) if ©" > Ry,

2" (Ry) = (4.3)
2"(Rp—) otherwise

12



In other words, until the particle-specific first disordend¢i©™ the primitive parameters are kept “dormant”
and repeatedly resampled (conditionally{an< ©}). As a result, at any instantthe particles that have no
signal presence are guaranteed to be diverse. Practigaliynplement the sampling on first line of (4.3) as
rejection sampling by sampling unconditionally from th@pof Z until the condition® > t is satisfied.

A further technique to overcome particle degeneracy in-gdssirder particles is artificial particle enrich-
ment. Namely, we introduce artificial moves for the constéstomponents following the Liu-West kernel
shrinkage scheme (Liu and West 2001). Thus, individualiglast experience small moves in time, such
that the overall marginal means and variance of the paffiltde are kept constant. We refer to our recent
work (Ludkovski 2012) for further details and analysis; welfthat this method reduces particle degeneracy
appreciably at a small computational cost. Algorithm 1 hedammarizes particle filtering in sensor arrays.

For simplicity it assumes that resampling takes place atsdidatesiR, = oy.

Algorithm 1 Particle Filtering in Sensor Arrays
Input: observations trajectoriy;) consisting of arrival dategr;) and markgvy,)

Samplez” ~7t,n=1,...,N
Setw"(0)=1,n=1,...,N
fork=1,...do
Carry out Liu-West step on” for {n : iy, = 0}
for each particles = 1,..., N do
If ©" > oy, re-sample:™ ~ p(Z|0© > oy,)
Compute disorder indicator proce@g’) on the intervat € (o, o541)
Calculate weightss™ (oy+1) < w"(ox)- A, )p(vis1s T2, , o 2") - oxp (— ST A @, 2 ds)
end for
if £SS(ok+1) < €ss then
Re-sampler’ « w™(of4+1) forn’ =1,..., N
Updatez™ + z(™")
Reset weightso™ (oj41) < 1
end if

end for

13



4.2. Monte Carlo Dynamic Programming

Equipped with the filter o7, Bayesian sequential detection reduces to solving thenapstopping problem
(2.10) with the Markovian state variablé,. Because(f[t) is high-dimensional, analytic approaches for
obtainingV become computationally intractable. Instead we use a talmsilation-based method. Recall

that for a discrete-time problem with finite horiz@hdefined by

VA0,7;T) = Te?ifm Ex { /0 H'(s,11,)ds + H*(r, HT)} , (4.4)
whereS2(T) = {r € S: 7 € {0, At,2A¢t,...,(T/At)At}}, Bellman’s optimality principle implies that
T (t)/ At—1
VARIL) =E { Z H' (st Ton) At + H (7% (), )| }'t} ; (4.5)
s=t/At

where 77(t) = tl(g,) + 77 (t + At)1(ge),

S, = {H2(t, ) < H'(t,I;)At + E {VA(t + At Ty ay)] ]:t}} ) (4.6)

and wherer* = 7%2(t) is the optimal stopping time conditioned on not stoppingobef, and S¢ is the
complement of the se;.

By the Markov property, the conditional expectatﬂEr{VA(t + At Ty ay)| }‘t} =: B(t,11,) is a func-
tion of the measure-valued, for some functionalEl : Ry x M(A) — R. The MCDP method first
replacesV/ (¢t + At,ﬁtJrAt) in the last term of (4.6) with aempirical pathwise continuation valug. A,

(computed according to (4.5)). It then implements (4.6) dplacing the conditional expectation operator

E[-| 7] (characterized as th&*-minimizer) with anL?-projection onto thepan(B;(IL;) : i =1,...,7),
E {VA(t + At, ﬁt—i—At)U:t} = Z o (t) Bi(I1y), (4.7)
i=1

where(B;(7))!_, are the basis functions and(t) the corresponding regression coefficients. This is im-
plemented through eross-sectional regressiasf a Monte Carlo collectiortvy’; 1,)3_; to find (o). Com-
paring the regression prediction; o’ (t) B;(11;) and the immediate payoff?(t, I1;) we then construct the
approximate stopping regio$y for (4.6).

Finally, since we do not have access(fcbt), we instead work with the approximate filtBit ), Thus,
we simulate) realizations(y?") of (Y,), generatinqﬂEN)’m) along each Monte Carlo path using the par-
ticle filter above. We then approximafe; (I1*) ~ Bz-(ﬂgN)’m) and using backward recursion implement
(4.6) by regressing the empiricéb;’; ,,) against the simulate({iBi(ﬁEN)’m) M_ . to obtain the empiri-
cal regression coefficients from the simulation of size a(M)v'(t), and the approximate value function

V20,7, T, M, N,r,At).
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4.3. Stationary Solution

Returning to our original problem, general theory (Ludka2009) implies that/* (0, 7; T, M, N, r, At) —
Vasr — oo, N = o0, M — oo, At — 0, T — oo. To obtain a stationary stopping rule on infinite hori-
zon, we (i) setry ~ II;+|© > T' for T’ large enough (this corresponds to a quasi-stationaryilision of
the filter conditional on no disorder yet; this distributioan be sampled from by generating path$Y5t)
constrained t® > 7T’ and filtering along them of9, T7"]); (ii) solve the finite horizon problerly > (7y; T')
for T large using the MCDP algorithm; (iii) using the stoppingioggS, and a fresh set of Monte Carlo

simulations, evaluate the performance of the resultingdien rule
V(0) ~Eg{(7 —©)" + f(d*,2)} + Ps{f <O},  F:=inf {t >0:10" ¢ 50} .
Algorithm 2 summarizes the full procedure in pseudo-code.

4.4. Choice of Algorithm Parameters

The Bayesian detection rule is a map betw&krand the stopping decision. This suggests that to obtain
good tests, it is first and foremost important to identify Keg features ifil,. For example, the posterior
probability of no disorderszr(ﬁ) directly drives the immediate payofi? and is certainly an important
guantity. In the MCDP method, this translates iperametrizingcandidate tests in terms of the summary
statistics used. For instance, if we take: 1, B, (t,7) = #({X; = 0}), the resulting detection test consists
of declaring alarms based solely B© < t|F;}. In general, this cannot be optimal, since it would imply
ignoring the other information i(nﬁt) while the latter has no finite-dimensional Markovian repreation.
(We remark that in the model of Raghavan and Veeravalli (0d.8imilar one-dimensional detection rule
was shown to be asymptotically optimal.)

The choice of the basis functiori3;(7) and their number is heuristic. First, we expeetto be large
enough so that the resulting projection of the conditionxaleetation is well-approximated, which can be
empirically verified by varying- and checking that the results remain stable. Second, whigecould
automate the choice @,; by selecting some functional family and picking the firserms, we observe that
practically speaking, customization to the given problémmsad is desirable in the sense of allowing smaller
r. For instance, it is recommended to include the terminal &bgt, I1;) as one of the basis functions.
Finally, we find that in practice the choice of the quantitdésand M that control algorithm running time
can be done independently; namely first pick number of dasti¥ to achieve minimal filtering error; then

pick number of simulationd/ large enough so that the Monte Carlo variance of the MCDP(stepitored
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through the regression coefficients™)) is acceptably small. Note that is primarily determined by

which in turn typically needs to grow (slowly) in the numbéisensorsi’.

5. RELATED MODELS

Our framework of applying stochastic filtering and optimalping techniques on quickest detection prob-
lems is highly flexible and can handle a variety of modified piedBelow we briefly discuss several other

cases that fit into the general framework described in Se&ib.

5.1. Further Examples of Signal/Observation Setups

Local Identification: Rather than identifying the global signal presence, it ierobf interest to carry out
local detection for a particular changepo#tft The other sensors are then used as secondary information

sources and the performance measure is modified to, e.g.,

Vl(ﬁ') = inf Ex {/ I{Xslzl} dS—I—Cl{X;ZO}},
0

TES
where now detection delay and false alarms are defined wsgieot tod! only. Solution of this problem

uses the identical method of Algorithms 1 and 2.

Signal Strength: As pointed out earlier, the observed arrival rare(éit;t, Z) may be a function of
the parameterg’. For instance, in physical systems with well-defined sigm&in, the signal strength
observed by each sensor would depend on the distance besweah origin© and sensor locatiod. In

homogenous media, we might therefore model

AF(XF:t, Z) = AR(0) + %.
Note that here the statistical profile after disorder, beirfgnction of unobserved, is no longer exactly
known. Of course, such dependence would help to improveti@te a similar adaptive disorder problem
for a single change-point was studied in Ludkovski (2012).

A further possibility is time-variable signal strength. riiestance, in biosurveillancgy}*) corresponds

to count of infected cases at siteonce an epidemic begins @t, the ensuing infectivity rate is nonlinear
AF = NH0) + A((t - 605)T),

whereA is some specified known function (e.g. through a correspgn@DE). Such dependence between
A and Z is straightforwardly incorporated into the filtering Algilhm 1. Since each particle is already
equipped with its copy™ of Z, all that is required is appropriate adjustment of the wisight (¢) in (4.2).
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Transient Signals: We could also consider problems with transient signals.if&iance, in radar com-
munications the signal corresponds to a target moving tir@pace. Given a radar detection radiys.
target affects observations at senat instantt only if |D; — A*|| < r, whereD, = O + Vt is the (for
simplicity 1-dim.) location of the target. Thus, each seris@xposed to two disorder tim@é' and*2

with the statistical profile
AR i R <t < 2
Af =
A*(0) otherwise.
In this setup,(f(t) can therefore transition both to “higher” and “lower” (imres of number of disorders
present) states; the rest of Algorithm 1 remains the sanearly) temporary disorder makes detection more

difficult.

5.2. Dependence between Change-Points and Observations

The traditional Bayesian formulation treats the undegy@ange-point®”* as conditionally independent
(given true signal parametets) of the observedY;*). However, this is not essential in our framework
which allows complex couplings between disorder sktend observation@\?t).

To illustrate the possibilities, we consider an interagtextension of the Markov model of Section 3.2
using a system of bivariate Hawkes processes for each sknsar, . .., K. We take(Y}*) to be a doubly
stochastic Poisson process with known pre- and post-disantensities\*(0) andA* (1) and arrivalgo¥),

¢ =1,.... Thetransition rate;*(¢) of (X*) now has a feedback effect from arrivals¥h

_ Bk —ok
pE(t) = p + Y atem IR, (5.1)
L:op<t
for some known constantd’ ¢ R, 5¥ ¢ R, k = 1,2,..., K. Thus, the transition rate ¢fX}) increases

by a* after each arrivab}; this effect dissipates exponentially at rate It follows that if a* > 0 then the
change-point* is likely to be “triggered” by a cluster of observed evenm,relating(?t) and(f(t).

As a motivation, consider a biosurveillance setup wt&fg) is the count of observed infections for an
endemic pathogen, amtf is the (unknown) instant when the disease goes epidemi@rfiigcsuch models
have been proposed for understanding the spread of aviad H5MNh human populations (Bettencourt and
Ribeiro 2008). Currently, avian flu is only (rarely) transi®d from animals to humans; however each time
a human is infected, further virus adaptation may resutibbng direct human-to-human transmission and
causing widespread epidemic. This creates a positive fedbetween observed infectioh‘j?’t) and the

epidemic change-point with* > 0 in (5.1).
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On afiltering level, dealing with (5.1) requires straigintfard adjustments in the particle filtering Algo-
rithm 1. Evaluating the likelihood of observatiom?t) conditional onX; remains elementary. Simulating
(Xt) conditional on a trajectory oY, can be done in the case of (5.1) through a variant of the Rotbdo-
ning algorithm (Lewis and Shedler 1979). Namely, we equighgzarticle with a time-dependent intensity
function ™ * () which is updated as new eventsarrive and in turn is used to simulate the particle-specific
disorder timed™*. Given#™*, the algorithm then proceeds as before to assign weights) and perform
resampling on the particle cloud. We note that with (5(X;, Z) is no longer Markovian, but the tuple

(X:, Y, fi;) is Markov, since the dynamics of the current intensity¢) depend only ofY;.

6. NUMERICAL EXAMPLES
6.1. Markovian Model

As a first example we consider a 2-sensor Markovian maolek= 2, which provides a semi-analytical
benchmark. The disorder indicator procéXs ) takes values iZ = {00,01, 10,11} and has the infinitesi-

mal generator
-0.3 015 0.15 0

0 -05 0 05 _ .
Q= ,  with P{X, =00} = 1. (6.1)

For observations, we take a basic doubly stochastic Poissatel for(Y,) with the intensities

X = (AL(j)) = i g x|’ =
7)) - and A " , j=0,1. (6.2)

Thus, the fused statistical profile is summarized by

8 3/8  5/8

B} , 13 ) _ 3/13 10/13

A = (A(Q))iee = ; p= W, 9)veq1,2y,icE = : (6.3)
10 5/10  5/10
15 5/15 10/15

The corresponding filte(rﬁt) of (f(t) is 3-dimensional. The following lemma, which is a direct kg

tion of the results in Ludkovski and Sezer (2012), charamgerthe evolution offl,).
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Lemma 6.1. The posterior filter(f[t) follows the piecewise-deterministic dynamics

ﬁt:?j(t—ak;ﬁok) for o <t < ogy1;

_ - (6.4)
H0k+1 = JVk+1HUk+1_7
where the jump operatof is defined coordinate-wise by
(Jr)i e — T APWs0) i€E (6.5)

B Zjeij/\jp(y;j)’
with \? = Z{f:l Ak () the arrival intensity in regime € E and the vector fieldi given byu!(t, ) =
%, with j(t,7) = me'@~1) the unnormalized likelihood processes, ahd= diag(\!, ..., \*)
the diagonal matrix of all the state intensiti@ss.

We consider a simple Bayesian risk minimization problem
Jp(1;70) = Exz, {/ [1—1%)ds + CHSO} , (6.6)
0

wherelT?’ = P{s < 60; A 65| F,} is the probability of no disorders observed yet and thereoisnis-
identification penaltyf = 0. Thus, the Bayesian risk minimization is equivalent to swvthe three-
dimensional optimal stopping proble(7,) := inf,cs Jp(7; 7). Using Lemma 6.1, we obtain that the
value functionV' (), @ € A, satisfies the variational inequality (in viscosity sensd anbject to further

technical assumptions)

min (LV (&) + ¢(1 — 790), 790 — V(7)) =0, (6.7)
where
L Nov K -
LV(@) = D gamd =N 470 Ml 5+ S VLA = VE)D wAp(v,i)
i€E \jEE JjEE g v=1 icE

Efficient numerical solution oV is possible using the methods of Dayanik et al. (2008a), buski and
Sezer (2012) which rely on applying Lemma 3.1 and iteratieelmputing.7 V,, using a two-step algorithm

consisting of deterministic optimization and interpadati

Remark 6.1. Another semi-analytic special case corresponds to pufesitih observations wher@;*)

are Brownian motions with drift driven b§X,). This is the observations setup in Raghavan and Veeravalli
(2010). Classical techniques (Bain and Crisan 2009, Ch B)yittinat in this case the filte(rﬁt) satisfies

the Zakai equation of nonlinear filtering. The resultingueafunctionV (7) can be again obtained via the
guasi-variational inequality (6.7) where now the generdtas a second-order elliptic differential operator.

At least for K = 2 these equations can be solved using standard pde methods.
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The left panel of Figure 3 shows a sample path of the infergmoblem corresponding to (6.1)-(6.3).
Recall that Lemma 6.1 means tHal, ) is piecewise-deterministic; in particular between evethis condi-
tional probability of no disorder risesIf° increases) while at event timeg the conditional probabilities
of disorders rise, with the precise amount contingent orotiserved mark,,. We observe that while the
intensity of arrivals grows by nearly 60% once both senseestke signal, there is considerable detection
delay and the signal is quite faint. In Figure 3 the filter tedo the disorder at sensor 1 around: 3.4,
and to the disorder at sensor 2 around 4.7 which confirms the presence of a signal and lead$b~ 0
for t > 5. We note that between the two disordéts< ¢ < 62 the filter only weakly detects the true state
X, = (1,0) (ﬁtlo never rises above 30%). Overall, this example illustradteddrge degree of noise present
in a typical model and the complexity of the filtering problem

Using the algorithm of Ludkovski and Sezer (2012) we prodeesblve for the resulting Bayes risk (6.6)
by a basic fixed-mesh discretization of the state spgace Ii, and computing the value function$,(7)
until ||V,, — Vi,_1]|se < 107, The right panel of Figure 3 shows the resulting stoppingored for ¢ = 10.

As expected, the decision maker stops ofifeis “low enough”. However, as a testament to the interaction
between the sensors, the optimal detection rule is not gimmg{t : TI)° < b} for some threshold, but
forms a nontrivial surface in the simpleX,. In particular forl1?° < [0.08,0.11], the stopping decision is

determined by the othdi,-coordinates.

00 oo 0 o o O 0B OO0 ®@ o0 o0 0
Sensor 1

&R OO Q0 O WO K0 OO K0 O M D OO0 W O
Sensor 2

'
0.2 A N * ¥
frog . [ SN
INORUSR N RS A
FONUIRN T~
Q
.

N
\
01f J R
Nt < oF
. T

e N
0 1 2 3 4 5 6 o1
Time

Figure 3: Left: Sample path of the observed arrivél§®), k£ = 1, 2 (top) and corresponding
3-dimensional filter(Ii;) (bottom) obtained from Lemma 6.1. The true disorder déates
are indicated with stars and dashed vertical lines. Rigbpmng regionS = {7 € Ay :
V(%) = H?(0,7)}.
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6.2. Wavefront Example

As our second example we take a one-dimensional wavefrodehfor Z = (O, 7y,V). NamelyO ¢

[0,2.5] with A; = 1 andAs = 2 and||O — Ax|| = |O — Ag|. We assume independent marginal distributions

0.5 with prob. 0.5;
To ~ Exp(0.3), O ~ Unif(0,2.5), V= (6.8)
1 with prob. 0.5.
The left panel of Figure 4 shows a sample path of the resuttanticle filter(ﬂﬁN)). From our numerical
experiments N = 2000 produces a good approximation to the true disorder prababill;; each path of

such(f[EN))te[O,lO}, takes about half a second to generate.

ow O [¢) ok O O @POD W @
Sensor 1
00 ® WO o O 00 O O 0 B O BN
Sensor 2
1
0o wn
08 B

_oif B e \\

W o6l B / \\

Vios)- J /

D o4f b s l (W,l;;\
03 S/ 3 l
0.2 /
01f /

0 69 R

. . . . . \

0 1 2 3 4 5 6 Ty
. 0.1

Time ¢ 6

Figure 4: Left: Sample path of the observatio(%/*) (top) and corresponding posterior
probability of disordetP{® < t|F,} computed usingI1\"*)) with N' = 2000. (bottom).
The true disorder date¥ are indicated with the dashed vertical lines. Right: déteatule
projected onto the simplex defined by the posterior probisilll; (1) = ]P’{f(t = i|F},

1 € E. The shaded volume indicates the respective stoppingrregio

We proceed to study the stopping rule for the pure Bayessnminimization problem (again without
classification objectives). We ugkt = 0.05, 7' = 8, M = 32,000 and N = 2000 particles with the four
r = 4, basis functions

By (7) = P{O© < t|F;}, Bo(7) = P{O' <t|F},
Bs(7) = P{6? < t|F}, Bu(7) =P{O© < t|F}>
Table 1 presents some summary results as we vary the cossefdarms:. We recall that in this case the

total Bayes risk can be decomposed into the probability lsefalarm (PFA) and expected detection delay
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¢ V(0) Ez{r*} PFA EDD

5 179 505 0.064 148
10 2.09 551 0.036 1.73
20 236  5.86 0.015 2.06

Table 1: Solution of the Bayesian risk minimization problem (2.16y & range of false
alarm costs.. We decompose the value function d$0) = Eg{(7* — 6)*} + cP;{0 <

7"} = EDD + ¢ - PFA.

(EDD). As expected, higherreduces PFA and increases EDD, as well as the average tiih&rghalarm.
For example for = 10, the PFA is about 3.6% while the detection delay is 1.73 timiésycorresponding
to about 20 arrivals after disorder). The right panel of Fégd shows the resulting stopping regiSrfor

¢ = 10 projected onto the 3-dim. simpleﬁt € Ay. Perhaps surprisingly, this region is much smaller
(i.e. detection rule is more conservative) than in the Maidko model above and only involves the corner
region aroundX; = (1,1). However, we note that it is almost impossible to ha#{&, = (1,0)|F;} or
IP’{Xt = (0,1)|F;} close to one, so in fact the corresponding corner regionserer visited by the paths
of (f[t); thus they are also not explored during the MCDP step anddbteracy of the stopping rule is not
guaranteed to be high there. In other words, while the coetbsiopping rule is clearly not accurate around
IP’{Xt = (1,0)|F} ~ 1, this has negligible effect on its Bayes risk or its (appneie) optimality. We
also remark that the exact stopping region is given in terfrteefull II, and the plot is therefore only a
projection of this infinite-dimensional object. Since th®sen basis functionB;(7) live on A4, Figure 4

does provide a faithful visualization of this approximatio

6.3. Detection and Identification with Multiple Sensors

Our final example explores the impact of deploying variahimbers of sensors for quickest detection and
also multi-objective Bayes risk. A signal arisesjatfrom location© according to the prior distribution in
(6.8). As the signal propagates, the background intensikycation A rises fromA*(0; Z) = 5 to a new

O-dependent intensity ok*(1;2) = 5 + The aim of the decision maker is to (i) detect the

10
1+[O—A?"
local change-poiné" at location4; = 1 as soon as possible and (ii) identify the signal originFor this
purpose, she can depldy = 1,2, 4 sensors at further location$, = 2, A3 = 0.5, A4, = 1.5. We use a

quadratic identification penalt§(d, Z) = |d — O|? for d € [0, 2], which leads tal: = E{O|F,}, so that
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62:0 02:10

K V() EDD Var{O|F,} V(0) EDD Var{O|F.-}

1 118 0.90 0.310 3.51 1.36 0.192
2 079 0.76 0.064 1.42  0.85 0.054
4 0.65 0.39 0.038 1.02  0.44 0.032

Table 2: Solution of the Bayesian risk minimization problem withsensors arranged in a

line. The value function is given by (6.9) with = 5. Here EDD :=Ez{(7* — 6')*}.

the full objective is

V(0) = int (EG {(r =09} + 1P {r < 6} + caVar {O|}‘T}>. (6.9)

We solve (6.9) using our method with/ = 24000 and N = 2000 and up tor = 11 basis functions
of the formP{6* < t|F;}, P{miny 6* < t|F;} andVar{O|F;}, as well as squares and pairwise products
of these posterior probabilities. Table 2 shows that thaltieg minimal Bayes risk is highly sensitive
to the number of sensors employed. As expected, with morgosgnthe detection delay decreases and
the posterior variance aP shrinks by an order of magnitude when comparfkig= 1 and K = 4. We
observe that the variable post-disorder intensity togetith further sensors more than halves detection

delay compared to the previous example.

7. CONCLUSION

Above we have developed a stochastic model for quickesttigtein sensor arrays. The key to our for-
mulation is a Bayesian point of view which translates chamgjat detection into a nonlinear filtering step
followed by an optimal stopping step. By approximating thk posterior distributior(f[t) to an arbitrarily
high precision, our method remains faithful to the true herkovian system dynamics. At the same time,
parametrizing the stopping tests using the basis functi§(%) corresponds to employing natural stopping
tests that can be easily understood by the policy maker.

Our approach lends itself to a robust numerical implemanmtahat can be easily customized and ex-
tended. We focused on a common case where the disordersggeréd mechanistically due to gradual
signal propagation; as a result it is natural to carry thergrice on the latent “primitive” system parameters.
For simplicity we used location and (radial) velocity as auain such parameters; in reality a large range

of other specifications (such as signal strength, etc.) dcbel considered. Perhaps the most interesting
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possibility is modeling the interaction between obseoratiand change-points along the lines sketched in

Section 5.2. A more detailed analysis of this case will besg@néed in a separate forthcoming paper.
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Algorithm 2 Disorder Detection in Sensor Arrays

Input: M (number of paths)N (number of particles per path)y¢ (time step for Snell envelopeBi(ﬁ)
(regression basis functions);(number of basis functions)
form=1,2,...,M do
Simulate a trajectoryy") of the observation proce$¥’;) on [0, 7
SampleN particles formingﬁ(()N)’m from the priorz of Z
Use the particle filter Algorithm 2 to compuﬁfzﬁj\’)’m along the pattty;”) fort = 0, At,..., T
Initialize v = Hy(T,T1"™), andr = T
end for
fort =T — At,...,At,0do
Evaluate the basis functios; (I1""™), fori = 1,...,randm = 1,..., M

Regress
M

aM(t) £  argmin Z ‘fum(t + At) — Zr:o/B,-(ﬂgN)’m) ’
(al,..,am)eRr i—1
form=1,...,M do
Sethb™(t) = Hy(t, TIV)™) andh2m (t,) = Hy(t, TIV™)
Setq™(t) = hl"™ At + S27_, oM)ii(1) By (T
SetS(t) = {m : h2™(t) < ¢"(t)} { Empirical Stopping Region
Setv™(t) = qm(t)l{gc(t)} + hz’m(t)l{g(t)}
Updater;" = 7Y Al rgen + g0y
end for
end for
Generate an independent fresh set of simulat{@ﬁs'), m=1,...,M
Initialize with II{""™" = # and find(T1{"")"™) along each observation path using Algorithm 1
form’=1,...,M do

Compute empirical stopping time” := inf{t : 4/ < S(0)}

m!

Compute empirical stopping cost’ := 7", =" h1™ (jAt) 4+ h>™ (™)
Compute empirical detection announceméfit

end for

return V(7)) o~ & oM o™

m/=1
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