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Abstract: We study Bayesian quickest detection problems with sensor arrays. An underlying signal is assumed to

gradually propagate through a network of several sensors, triggering a cascade of inter-dependent change-points. The

aim of the decision-maker is to centrally fuse all availableinformation to find an optimal detection rule that minimizes

Bayes risk. We develop a tractable continuous-time formulation of this problem focusing on the case of sensors col-

lecting point process observations and monitoring the resulting changes in intensity and type of observed events. Our

approach uses methods of nonlinear filtering and optimal stopping and lends itself to an efficient numerical scheme

that combines particle filtering with Monte Carlo based approach to dynamic programming. The developed models

and algorithms are illustrated with plenty of numerical examples.
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1. INTRODUCTION

Quickest detection of signal changes is an important problem in a variety of disciplines ranging from bio-

surveillance to network communications. In a common setting, several sensors are arranged in a specified

sensor topology and monitor for a signal that may arise in a region of interest. With this physical layout, the

signal graduallypropagatesthrough space, triggering distinct change-points as it reaches each sensor site.

The task of the sensors is to fuse the sequentially collectedinformation in order to detect the change-points

as quickly as possible while controlling for probability offalse alarms.
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A mechanistic description of a sequence of such disorders may be given by specifying the signal origin,

start time, propagation dynamics and impact on sensor data.Alternatively, a purely statistical description

can be made through specifying the relationship between theunderlying change-points. In either case,

the information fusion is fundamentally driven by the dependence structure of the change-points and the

induced correlation among sensor observations. As a result, the associated detection problem is intrinsically

multi-variate and much more complex than in the traditionalsingle change-point models.

Quickest detection problems have been extensively analyzed in the past fifty years under a variety of

probabilistic assumptions, including min-max, Bayesian and other settings, see e.g. the recent survey of

Polunchenko and Tartakovsky (2012). In particular, optimal detection with multiple sensors was treated

among others in Bayraktar and Poor (2008), Dayanik et al. (2008b,a), Tartakovsky et al. (2006). However,

nearly all existing analysis is limited to the case of an identical change-point across all observation pro-

cesses. This assumption rules out consideration of sensor topologies where the signal physically propagates

through the sensor array. Optimality properties of detection rules such as CUSUM or Shiryaev-Roberts have

been thoroughly studied in a variety of single change-pointmodels, see for instance Feinberg and Shiryaev

(2006), Moustakides (2004), Pollak and Tartakovsky (2009). In contrast, the case of multiple change-points

has been considered only very recently. The influential workof Raghavan and Veeravalli (2010) investigated

propagating change-points, but only under a restrictive Markovian mechanism with a known propagation or-

der. Moreover, Raghavan and Veeravalli (2010) focused on the asymptotic Bayesian solution which admits

a one-dimensional sufficient statistic and a simple threshold strategy. While theoretically convenient, these

features cannot be maintained in realistic sensor networks. From a different direction, Hadjiliadis et al.

(2009a) considered detection of the first disorder in aK-dimensional min-max setting, establishing asymp-

totic optimality of the multi-chart CUSUM rule as the probability of false alarms vanishes. In this paper,

our aim is to construct the exact Bayesian optimal solution,rather than seeking other (asymptotic) notions

of optimality. Thus, we focus on numerical approximation ofthe non-asymptotic optimal detection policy

while maintaining as general a framework as possible.

Biosurveillance Application

Our main motivation for sensor array modeling arises from biosurveillance applications. The aim of bio-

surveillance is to monitor a range of prediagnostic and diagnostic data for the purpose of enhancing the

ability of the public health infrastructure to detect, investigate, and respond to disease outbreaks. A typi-

cal example involves influenza surveillance in order to implement timely mitigation policies for the annual

winter flu epidemics. Flu monitoring tracks the number of observed ILI (influenza-like-illness) cases in the
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surveyed population, augmented with emergency room visits, laboratory tests, over-the-counter medication

sales, etc. This is done on a local level by the city- or county-administered public health agencies. An

epidemic traveling wave is commonly observed for new influenza strains (Riley 2007) (for example, the

2009 H1N1 pandemic originated in Mexico in April 2009 and gradually spread across the world over that

summer); at the same time the inherently random movements and interactions between individuals intro-

duce a high degree of stochasticity in epidemic spread. In order to localize outbreak detection, multi-site

monitoring (e.g. in several neighboring counties) is strongly advocated. Thus, it is of great interest to effi-

ciently fuse information from multiple spatially heterogeneous surveillance sites to pinpoint epidemic onset

and pathogen properties. As noted by Raubertas (1989), a major open challenge is that “the use of spatial

information is computationally demanding”.

New Approach

Below we adopt the Bayesian formulation of quickest detection to develop a novel sequential algorithm for

detection and identification of the unknown change-points.Our framework relies on the optimal stopping

paradigm and allows us to efficiently obtain numerical solutions in generic models of sensor arrays. As

our main setup we considercentralized Bayesian detectionwith continuous-time observations modeled as a

point process. Use of continuous-time is not only convenient analytically but is also more faithful for asyn-

chronous systems without a well-defined time scale. For instance, biosurveillance has been moving from

discrete weekly or daily data collection to real-time syndromic monitoring, such as the Google FluTrends

search engine data. Real-time information is bursty and consists of discrete events that punctuate periods of

inactivity. We model such observations via a marked point process, linking to the theory of Poisson disor-

der problems. Because the eventual numerical implementation is in discrete time, our methods are in fact

directly applicable (with obvious modifications) also in discrete-time models.

In line with the envisioned applications, we assume centralized information processing, with all sen-

sors continuously relaying all observations to the fusion center. The latter then aggregates these multi-

dimensional observations to infer current signal state andmake the optimal detection decision. This situation

occurs when information transmission is cheap and there is aclear hierarchy of decision making (e.g. federal

biosurveillance protocols mandated by the CDC). With low-power sensors, such as in military applications

or wireless networks, it might be too expensive for a sensor to continually communicate, making decentral-

ized detection essential (Tartakovsky and Veeravalli 2005, 2008, Veeravalli et al. 1993, 1994, Unnikrishnan

et al. 2011). Proposed solutions include one-shot communications (Hadjiliadis et al. 2009b), asynchronous

communication protocols (Fellouris and Moustakides 2011), and distributed algorithms without central fu-
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sion (Rajagopal et al. 2010).

Compared to existing approaches, our framework removes several important limitations by allowing for

(i) generic signal propagation without any restrictive assumptions on network topology or ordering of the

change-points; (ii) a true Bayesian formulation without existence of low-dimensional sufficient statistics or

independence between change-point and observations; (iii) consideration of joint detection and identification

objectives; (iv) flexible model specification through a fully simulation-based implementation that requires

no intermediate analytical computations. The last point inparticular means that the proposed algorithm

code can be easily augmented in response to a modified model and is well suited to be published as an

online package. Another benefit of our Bayesian approach is the ability to simultaneously optimize multiple

objectives, such as balancing low detection delay vis-a-vis identification of the signal type. Identification of

the signal is a common task in sensor arrays via triangulation of sensor measurements.

Summing up, our contribution is to develop a comprehensive Bayesian formulation of the detection prob-

lem in sensor arrays which faithfully accounts for signal propagation and sensor interaction. This framework

is related to our previous work on Bayesian detection problems in the context of Poisson-type observations

(Bayraktar and Ludkovski 2009, 2010, Ludkovski and Sezer 2012), as well as the author’s computational

tools (Ludkovski 2009, 2012). The tractability and flexibility of our approach is demonstrated with several

examples in Section 6.

2. STOCHASTIC MODEL

Let (~Yt) ≡ (Y k
t ) be the data streams at given sensor sitesk = 1, 2, . . . ,K. For instance, in the context of

biosurveillance, sites may refer to counties within a givenstate. The statistical properties of the information

received at each site undergo a transition when the signal ispresent; the instants of disruption, henceforth

called a change-point, are denoted byθk, k = 1, . . . ,K.

2.1. Propagation Model

A basic spatial spread of the signal can be mechanistically represented by awavefrontmodel illustrated

in Figure 1. In that diagram, starting from its origin location O = (o1, o2) at initial epochT0 ≥ 0, the

signal spreads outwards at constant radial velocityV, eventually reaching the (known and fixed) sensor site

locationsAk = (a1k, a
2
k) ∈ R

2. Thus, the corresponding change-points are

θk := T0 + inf {t ≥ 0 : ‖O −Ak‖ ≤ Vt} = T0 +
‖O −Ak‖

V
, k = 1, . . . ,K, (2.1)
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Figure 1: Signal front propagating through space. Signal starts at origin O and has constant

radial velocityV.

where‖ · ‖ is the given metric for signal propagation, e.g. the Euclidean distance inR2 (see Figure 1)

or a graph distance on a network. The system state is then described by thedisorder indicator process

~Xt ≡ (X1
t , . . . ,X

K
t ) ∈ {0, 1}K which encodes the present state of the signal at each site,

Xk
t := 1{θk≤t}, k = 1, 2, . . . ,K. (2.2)

To lighten notation, we will alternately think of(~Xt) as a process on the canonical spaceE = {ek : k =

1, 2, . . . , 2K}, whereek ∈ R
2K is a vector with zero entries everywhere except a unit at thek-th coordinate,

ekj = δkj, with δ the Dirac delta.

These signal parameters are summarized asZ ≡ (O,T0,V) ∈ A ⊆ R
|Z|, whereA is the set of all

possible signals, and are not observed. Rather, the observed information is solely based on the sensor data

so far,

Ft := σ(~Ys : s ≤ t). (2.3)

It is contrasted with the full filtrationGt := Ft ∨ σ(Z). Crucially, while(~Xt) is trivially G-adapted, it is

not measurable with respect to(Ft). Following the Bayesian paradigm, the parametersZ are treated as a

random vector with a known prior distributionZ ∼ π̃.

Remark 2.1. The disorder process(~Xt) is the key system state for quickest detection. As such, one could

omit any description of the signal primitivesZ and directly specify the distribution of(~Xt) through e.g. a

copula on the marginal disorder datesθk. Indeed, the possible relative locations of(O, Ak) simply induce

an implicit relationship between(Xk
t )’s. We find the use of copulas less convincing and more difficult

to calibrate; moreover a copula approach typically precludes any Markovian description of(~Xt) which is

available in the mechanistic description used below.
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2.2. Observations Model

A variety of formulations are possible for the dynamics of observations(~Yt). Motivated by sensor arrays

that monitor asynchronous “lumpy” events, we model each coordinate(Y k
t ) via a doubly stochastic Poisson

process driven by the signal. Precisely, we assume that(Y k
t ) is a point process with intensityΛk(Xk

t ; t, Z).

In other words, we have that

dY k
t = 1{t≤θk}dN

k,0(t) + 1{t>θk}dN
k,1(t), k = 1, . . . ,K, (2.4)

where(Nk,j(t)) are conditionally independent counting processes with intensitiesΛk(j; t, Z), j = 0, 1,

whereΛk(j; t, z) are given functions. In the basic case whereΛ’s are independent of outbreak parametersZ

and oft, (Nk,j(t)) become Poisson processes. Note that this formulation allows both the post-change and

pre-change (which is less realistic perhaps) observation characteristics to depend on the changepoint.

As seen by the central decision-maker, the superposition property of counting processes allows to combine

all the information sources into a single doubly-stochastic markedpoint process. Indeed, letY = (σk, νk)

be a marked point process with arrival timesσk < σk+1 ∈ R+ and marksνk ∈ {1, 2, . . . ,K}. Theσ’s

aggregate all the events observed at the sensors, while the marksνk identify which sensor collected thek-th

event. Then (Bremaud 1981),Y has intensity

Λt :=

K
∑

k=1

Λk(Xk
t ; t, Z), (2.5)

and conditional mark distribution

p(k; ~x, t, Z) := P

{

νℓ = k|~Xσℓ− = ~x, σℓ = t, Z
}

=
Λk(xk; t, Z)

∑K
j=1Λ

j(xj ; t, Z)
. (2.6)

2.3. Performance Criterion

We take the point of view of a policy maker who aims to detect signal presence in the array, i.e. theminimum

of the change-points

Θ := min(θ1, . . . , θK),

by raising the alarm at decision timeτ ≤ ∞. Sinceθk are not directly observed, we require that the decision

is based on available information, namelyτ ∈ S, whereS denotes the set of allF-adapted stopping times.

Given Bayesian priors, the key objective of the policy makeris to achieve quickest detection while main-

taining a bound on false alarm frequency. Additionally, thepolicy maker accounts for thequality of her
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detection by making an announcementd ∈ R
|Z| at the detection date and comparing it to the true signal-

typeZ. Formally, the controller wishes to minimize a weighted average of expected (linear) detection delay

(ADD), probability of false alarms (PFA), and announcementerror. For concreteness, we will base our crite-

ria on the detection delay(τ−Θ)+, wherea+ := max(a, 0), the probability of the false alarm{τ < Θ}, and

the classification errorf(d, Z), wheref is a given mis-identification penalty function and the announcement

d ∈ Fτ is based on the observations up toτ only.

Denote byπ̃ the distribution ofZ = (O,T0,V) (which equivalently induces some distribution~π0 on

~X0). We useP~π0
andE~π0

to denote the corresponding probability measure and expectation. The Bayesian

quickest detection problem is to compute

V (π̃) := inf
τ∈S,d∈Fτ

Eπ̃

{

(τ −Θ)+ + c1{τ<Θ} + f(d, Z)
}

= inf
τ∈S,d∈Fτ

E~π0

{
∫ τ

0
1
{~Xs 6=~0}

ds+ c1
{~Xτ=~0}

+ f(d, Z)

}

, (2.7)

where~0 = (0, 0, . . . , 0) ∈ R
K is the zero element inE. The first term on the right-hand-side in (2.7) is the

average detection delay, the second term is the likelihood of a false alarm given that outbreak is declared at

τ , and the third term is the accuracy of identifying thetypeof the outbreak. The parameterc is the tunable

penalty for false alarms; smallc will induce aggressive detection, whilec → ∞ is the case where false

alarms are not tolerated; similarly the functionf is the tunable penalty for mis-classification.

Remark 2.2. More generally, we may consider the problem of detecting anyhitting time of(~Xt), i.e.Θ :=

inf{t : ~Xt ∈ G}, G ⊆ E. For example, the setting of (2.7) corresponds toG ≡ {~0}c while G = {~x : xk =

1} corresponds to detecting the disorder in thek-th channel only. Finally, we could also straightforwardly

generalize to linear combinations of objectives such as in (2.7), asking the controller to choose a sequence

of pairs(τℓ, dℓ) to match someΘℓ’s.

If (~Xt) was observed (i.e.F-adapted), then the optimal detection rule would simply be(τ∗ = Θ, d∗ = Z);

the crux of the problem is therefore to construct a good approximation toΘ using information flow(Ft) only.

From a control perspective, this means that to minimize Bayes risk requires solving a partially observable

optimal stopping problem. Indeed, the costs in (2.7) are notmeasurable with respect to the decision variables

(τ, d). Accordingly, the solution approach (Peskir and Shiryaev 2006) is to first performfiltering of the latent

state(~Xt) by computing the posterior distribution

Πt(D) := P~π0

{

~Xt ∈ D|Ft

}

D ⊆ {0, 1}K . (2.8)

For a Borel setE , denote byM(E) the set of all probability measures supported byE . Then we may identify

Πt as an element ofM({0, 1}K ) ≡ ∆2K := {~π ∈ [0, 1]2
K

:
∑

i π
i = 1}, i.e. a(2K − 1)-dimensional
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stochastic process on the simplex∆2K . Alternatively, in terms of the model primitives we can consider the

filter (Π̃t), which is a diffuse-measure-valued process onM(A), such that for any Borel set̃D ∈ B(A),

Π̃t(D̃) := Pπ̃{Z ∈ D̃|Ft}. (2.9)

An important advantage of using(Π̃t) over (Πt) is the Markov property. Indeed, since(~Xt) is in general

not Markov, neither is its conditional distribution. On theother hand, sinceZ is constant, the full filter(Π̃t)

is trivially Markov. In other words, to gain the Markov property, one must lift from the restricted filter(Πt)

to the full filter (Π̃t). In particular, it is immediate that one can evaluate the conditional probability of any

G-measurable functiong(z) as

Π̃t(g) := Eπ̃ {g(Z)|Ft} =

∫

A
g(z)Π̃t(dz).

An important example which allows to project down from̃Πt to Πt is Π̃t(1{θk≤t}) = Πt({X
k
t = 1}).

Taking conditional expectations with respect to(Ft) in (2.7), we end up with the Bayesian performance

functionalV (π̃) = infτ,d JB(τ, π̃) with

JB(τ ; π̃) := E

{∫ τ

0
H1(s, Π̃s) ds +H2(τ, Π̃τ )

∣

∣ Π̃0 = π̃

}

, (2.10)

whereH1(t, π̃) := π̃(1{Θ≤t}) andH2 optimizes over the announcementd,

H2(t, π̃) := cπ̃(1{Θ>t}) + inf
d
π̃(f(d, Z)).

A Bayesian optimal detection ruleτ∗ is the optimizer in (2.10) and can be viewed as the functional

mapping histories to decisionsτ∗ : Ft → {stop, continue}. Because the state variable is Markov, the

detection rule is simplified to a function of the currentΠ̃t. This point of view highlights the key challenges

in working with (2.10), namely the need to (i) characterize and solve the evolution equations of the filter

process(Π̃t) and (ii) overcome the curse of dimensionality associated with optimizing over the state space

of Π̃t. In fact, without further assumptions,̃Πt is infinite-dimensional makingV a functional on the non

locally compact spaceM(A). Thus, a complete Bayesian solution requires consideration of non-Markov

optimal stopping (if working with(Πt)) or infinite-dimensional Markov optimal stopping problems. The

resulting complexity has earned this approach the stigma ofanalytical and computational intractability.

3. Solution Method

In general, there are no sufficient statistics for the measure-valued process(Π̃t). The only special cases we

are aware of consist of either (a) taking(~Xt) be Markov or (b) making the supportA of Z to be finite. Oth-

erwise, the key to characterizing(Π̃t) are stochastic filtering techniques (Bain and Crisan 2009).Namely,
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(Π̃t) satisfies a variant of the Kushner-Stratonovich nonlinear filtering equation. These equations are typ-

ically analytically intractable, and we therefore seek numerical approximations. An efficient and flexible

approach to computing̃Πt is to apply Sequential Monte Carlo methods (SMC), also knownas particle fil-

ters, which approximatẽΠt with an empirical particle cloud (Doucet et al. 2001). The main mechanism of

SMC consists of a mutation-selection procedure applied to an interacting particle system.

In terms of the control step, since the state variable isΠ̃t, analytic characterizations, through, e.g. quasi-

variational inequalities, of the resulting value functionV (π̃) are difficult to come by. Instead we recall the

probabilistic characterization ofV through its dynamic programming equations. Precisely, define for any

stopping timeσ > 0 the monotone operatorJ acting on a measurable test functionv :M(A)→ R via

J v(π̃) = inf
τ∈S

Eπ̃

{∫ τ∧σ

0
H1(s, Π̃s) ds+ 1{τ≤σ}H

2(τ, Π̃τ ) + 1{τ>σ}v(Π̃σ)

}

. (3.1)

Then guided by the Bellman optimality principle we have that

Lemma 3.1. V (π̃) is the largest fixed point ofJ smaller thanH2(0, π̃) and one can approximateV as

V = lim
n→∞

Vn, whereVn := J Vn−1, with V0(π̃) = H2(0, π̃).

Moreover, the optimal stopping rule is given by

τ∗ = inf{t : V (Π̃t) ≥ H2(t, Π̃t)}, (3.2)

and can be approximated throughτn = inf{t : Vn(Π̃t)) ≥ H2(t, Π̃t)}.

The optimal stopping problem in (3.1) leads to a representation of V (Π̃t) as the Snell envelope corre-

sponding to the reward functionalJB(τ ; ·) in (2.10). In turn, this gives rise to a novel approach to resolve

challenge (ii) through the use of Monte Carlo dynamic programming (MCDP) methods (Egloff 2005, Lud-

kovski 2009) to solve the dynamic programming equations within a stochastic simulation/regression frame-

work. A simplified version of this approach was studied in Ludkovski (2012) for a special case of (2.7) with

a single change-pointθ modulating a multivariate jump-diffusion(~Yt). The resulting Monte Carlo algo-

rithm first uses particle filtering to obtain a high-dimensional approximation(Π̂(N)
t ) to the true(Π̃t) with

arbitrarily small errors as the number of particlesN → ∞, and then applies MCDP to solve the optimal

stopping problem for(Π̂(N)
t ). Overall, we end up with a fully simulation-based solution of the Bayesian

formulation, which seamlessly merges SMC inference methods and MCDP for the optimal stopping step.

3.1. General Setup

The schematic of Figure 1 and the ensuing formulation was chosen for simplicity; a much more general

setup can be considered within the Bayesian paradigm. Let~Xt = (X1, . . . ,XK) be a stochastic process

9



on {0, 1}K corresponding to sensor change-point indicators, and(~Yt) be the stochastic process for ob-

servations. In addition, let the random vectorZ be the collection of all relevant model parameters. Let

Ht := σ((~Xs, ~Ys), s ≤ t) ∨ σ(Z) be the full filtration. Then the Bayesian framework treats(~Xt, ~Yt) as a

coupled process (note that we no longer assume that~Xt is σ(Z)-measurable) which is to be estimated based

on observed informationFt only.

To wit, the evolution of the pure jump process~Xt is summarized by its transition timesTℓ and the discrete

skeleton chain(χℓ),

~Xt =
∞
∑

ℓ=1

χℓ1{Tℓ≤t<Tℓ+1}, χℓ ∈ {0, 1}
K .

We assume thatTℓ andχℓ are described respectively through an intensity function~µt and jump distribution

ν(·). A minimal requirement is that(~µt) isH-adapted and the distributionν of χℓ isHσℓ−-measurable.

Depending on the actual dependence structure of(~Xt) three main cases can now be identified. Mechanis-

tic disorder models correspond to(~Xt) being adeterministicfunction ofZ (i.e.σ(Z)-measurable) and can

be used to model a random phenomenon that propagates throughthe sensor array as in Figure 1. The case

where(~Xt) is anautonomous Markovprocess (possibly in an enlarged space, to allow for time-dependence

and self-exciting features) models the situation of an exogenous epidemic process observed through con-

ditionally independent(~Yt). Finally, the case where~µt and/orν depend on(~Yt) corresponds to feedback

effects where the change-points are (partially) driven by the observations.

Moreover, we can also generalize to more complex observation processes(~Yt). For example, diffusion or

jump-diffusion observations can be treated in completely analogous manner and could be used to e.g. model

high-frequency biosurveillance data, such as search engine queries or online sales of flu medications. The

basic requirement is tractability of the conditional likelihoodsp(~Yt|~Xs, 0 ≤ s ≤ t, Z), and conversely

of p(~Xt|~Ys, 0 ≤ s ≤ t, Z). These probabilities are always available in closed-form whenever(~Yt) is a

marked point process, see (4.2) below. We further discuss some of the possible setups in Section 5.

3.2. Relationship to a Markovian Model

Let us compare the setup of Figure 1 to the simplified model where the disorder indicator process(~Xt) is

directly taken to be Markov. This is the original approach ofRaghavan and Veeravalli (2010) and can be

viewed as a Hidden Markov model where the change-point timesθk are given in terms of hitting times of

a latent state(~Xt). In the case of two sitesK = 2, this means that the signal~Xt = (X1
t ,X

2
t ) ∈ E :=

{00, 01, 10, 11} is an autonomous Markov chain with known generatorQ. The disorder times areθk =

inf{t ≥ 0 : Xk
t = 1}; the observations(~Yt) remain as in (2.4) and all the parametersZ ≡ (µij ,Λ

k(j)) are
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known. The resulting evolution is illustrated in Figure 2.

In this case, signal detection reduces to afinite-dimensionalproblem, namely filtering(~Xt) is equivalent

to finding the posterior distribution (3-dim vector)~Πt ≡ (Πℓ1ℓ2
t ),

Πℓ1ℓ2
t := P~π0

{

~Xt = ℓ1ℓ2|Ft

}

, ℓk ∈ {0, 1},

which provides a full characterization of the system state at datet. The Bayesian formulation can now be

analytically characterized (subject to verifying technical conditions) through e.g. quasi-variational inequal-

ities satisfied by the value function. We present an example of such semi-analytical approach in Section 6.1

where~Πt admits explicit dynamics.

However, the assumption that(~Xt) is a finite-state Markov chain imposes severe restrictions (e.g. ex-

ponential inter-disorder times) in terms of calibrating the model. Also, unless symmetry is assumed, the

number of parameters to specifyQ and the modulation ofΛ by ~Xt grows exponentially in the number of

sensorsK. In Raghavan and Veeravalli (2010) a fixed order was imposed on the relative occurrence ofθk,

leading to aK-dimensional sufficient statistic. Such an assumption corresponds to knowing exactly the

identity of the first sensor to observe the disorder and mightbe unrealistic in many applications.

4. NUMERICAL ALGORITHM

In this Section we propose a new method to approximate the value function of (2.7). Illustrative examples

are then provided in Section 6.

4.1. Particle Filtering

To compute the filter (2.9) we utilize sequential Monte Carloapproach to approximatẽΠt ≃ Π̂
(N)
t , where

the discrete measurêΠ(N)
t consists ofN particles,

Π̂
(N)
t :=

1

W (t)

N
∑

n=1

wn(t)δzn(t)(·). (4.1)
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Abovewn(t) ∈ R+ are the particle weights,W (t) is a normalizing constant, andzn(t) = (on, T n, vn)

are the particle version of all the unknown parametersZ. In other words, any posterior probability is

approximated via

Pπ̃{Z ∈ D̃|Ft} ≃
1

W (t)

∑

n:zn(t)∈D̃

wn(t), D̃ ⊆ A.

The SMC algorithm is now specified through the recursive evolution of the particles(wn(t), zn(t))Nn=1,

allowing for a sequential (online) update of the particle filter as new information is collected. This evolution

is given by the genetic mutation-selection steps. In general, the particles are supposed to mimicZ, so that

zn(t) = zn is static. Givenzn we can also compute the associated change-pointθn,k, k = 1, . . . ,K, and

the dynamic disorder indicator~xn,kt := 1{θn,k≤t}. The weightswn(t) then correspond to the likelihood

of observations(~Ys)s≤t given the particle history(~xn(s))s≤t. Using the properties of doubly stochastic

marked point processes, we have

wn(t) = wn(s) · exp

(

−

∫ t

s
Λ(~xnu) du; z

n

)

·
∏

k:s≤σk≤t

Λ(~xnσk
)p(νk; ~x

n
σk
, zn). (4.2)

As information is collected, most particles will diverge from observations and their weights will collapse

wn(t)→ 0. To avoid the resulting particle degeneracy, the SMC approach applies sequential resampling to

multiply “good” particles, and cull poor ones, ensuring particle diversity. Thus, we introduce re-sampling

instancesRk, k = 1, . . ., at which we draw (with replacement) from the atomic measureΠ̂
(N)
Rk−

according to

the weightswn(Rk−) and then reset the particle weights town(Rk) = 1. A popular approach to select the

Rk ’s is to use the Effective Sample Size (ESS) measure of particle diversity,ESS(t) = {
∑N

n=1(w
n(t))2}−1

and resample as soon as ESS drops below a thresholdRk = inf{t ≥ Rk−1 : ESS(t) ≤ ess}.

Due to the static nature ofZ and accordinglyzn above, the above resampling in fact does not fully resolve

particle degeneracy, since it will simply produce identical copieszn
′

of particles whose parent waszn. Thus,

ast → ∞, all the particles will eventually become identical. This particle collapse phenomenon is well-

known when using SMC for static parameter estimation and calls for making the particles truly dynamic.

Recall that the key quantity for detection are the sensor disorder indicators(~Xt) which track the change-

pointsθk. Consequently, we adjust our SMC algorithm to treat the particle-specific~xnt (and hencezn(t))

as a dynamic process. The main idea is that while the particles zn(t) still mimic Z, we assume that until

the first disorderΘn := mink∈{1,...,K}(θ
n,k), zn(t) can be resampled freely to maintain particle diversity.

Formally, at the resampling dateRk we regenerate the particle parameters according to:

zn(Rk) =











z′ wherez′ ∼ p(Z|Θ > Rk) if Θn > Rk,

zn(Rk−) otherwise.
(4.3)
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In other words, until the particle-specific first disorder timeΘn the primitive parameters are kept “dormant”

and repeatedly resampled (conditionally on{t < Θ}). As a result, at any instantt, the particles that have no

signal presence are guaranteed to be diverse. Practically,we implement the sampling on first line of (4.3) as

rejection sampling by sampling unconditionally from the prior of Z until the conditionΘ ≥ t is satisfied.

A further technique to overcome particle degeneracy in post-disorder particles is artificial particle enrich-

ment. Namely, we introduce artificial moves for the constantZ-components following the Liu-West kernel

shrinkage scheme (Liu and West 2001). Thus, individual particles experience small moves in time, such

that the overall marginal means and variance of the particlefilter are kept constant. We refer to our recent

work (Ludkovski 2012) for further details and analysis; we find that this method reduces particle degeneracy

appreciably at a small computational cost. Algorithm 1 below summarizes particle filtering in sensor arrays.

For simplicity it assumes that resampling takes place at arrival datesRk = σk.

Algorithm 1 Particle Filtering in Sensor Arrays

Input: observations trajectory(~yt) consisting of arrival dates(σk) and marks(νk)

Samplezn ∼ π̃, n = 1, . . . , N

Setwn(0) = 1, n = 1, . . . , N

for k = 1, . . . do

Carry out Liu-West step onzn for {n : ~xnσk
= ~0}

for each particlen = 1, . . . , N do

If Θn > σk , re-samplezn ∼ p(Z|Θ > σk)

Compute disorder indicator process(~xnt ) on the intervalt ∈ (σk, σk+1)

Calculate weightswn(σk+1)← wn(σk) ·Λ(~x
n
σk+1

)p(νk+1; ~x
n
σk+1

, zn) ·exp
(

−
∫ σk+1

σk
Λ(~xns , z

n) ds
)

end for

if ESS(σk+1) < ess then

Re-samplen′ ∝ wn(σk+1) for n′ = 1, . . . , N

Updatezn ← z(n
′)

Reset weightswn(σk+1)← 1

end if

end for

13



4.2. Monte Carlo Dynamic Programming

Equipped with the filter ofZ, Bayesian sequential detection reduces to solving the optimal stopping problem

(2.10) with the Markovian state variablẽΠt. Because(Π̃t) is high-dimensional, analytic approaches for

obtainingV become computationally intractable. Instead we use a robust simulation-based method. Recall

that for a discrete-time problem with finite horizonT defined by

V ∆(0, π̃;T ) := inf
τ∈S∆(T )

Eπ̃

{∫ τ

0
H1(s, Π̃s) ds +H2(τ, Π̃τ )

}

, (4.4)

whereS∆(T ) = {τ ∈ S : τ ∈ {0,∆t, 2∆t, . . . , (T/∆t)∆t}}, Bellman’s optimality principle implies that

V ∆(t, Π̃t) = E







τ∗(t)/∆t−1
∑

s=t/∆t

H1(s∆t, Π̃s∆t)∆t+H2(τ∗(t), Π̃τ∗(t))
∣

∣Ft







; (4.5)

where τ∗(t) = t1{St} + τ∗(t+∆t)1{Sc
t }
,

St :=
{

H2(t, Π̃t) < H1(t, Π̃t)∆t+ E

{

V ∆(t+∆t, Π̃t+∆t)| Ft

}}

, (4.6)

and whereτ∗ = τ∗,∆(t) is the optimal stopping time conditioned on not stopping before t, andSc
t is the

complement of the setSt.

By the Markov property, the conditional expectationE

{

V ∆(t+∆t, Π̃t+∆t)
∣

∣Ft

}

=: Ê(t, Π̃t) is a func-

tion of the measure-valued̃Πt for some functionalÊ : R+ × M(A) → R. The MCDP method first

replacesV (t + ∆t, Π̃t+∆t) in the last term of (4.6) with anempirical pathwise continuation valuevt+∆t

(computed according to (4.5)). It then implements (4.6) by replacing the conditional expectation operator

E[·|Ft] (characterized as theL2-minimizer) with anL2-projection onto thespan(Bi(Π̃t) : i = 1, . . . , r),

E

{

V ∆(t+∆t, Π̃t+∆t)|Ft

}

≃
r

∑

i=1

αi(t)Bi(Π̃t), (4.7)

where(Bi(π̃))
r
i=1 are the basis functions andαi(t) the corresponding regression coefficients. This is im-

plemented through across-sectional regressionof a Monte Carlo collection(vmt+∆t)
M
m=1 to find (αi). Com-

paring the regression prediction
∑

i α
i(t)Bi(Π̃t) and the immediate payoffH2(t, Π̃t) we then construct the

approximate stopping regionSt for (4.6).

Finally, since we do not have access to(Π̃t), we instead work with the approximate filterΠ̂(N). Thus,

we simulateM realizations(ymt ) of (~Yt), generating(Π̂(N),m
t ) along each Monte Carlo path using the par-

ticle filter above. We then approximateBi(Π̃
m
t ) ≃ Bi(Π̂

(N),m
t ) and using backward recursion implement

(4.6) by regressing the empirical(vmt+∆t) against the simulated{Bi(Π̃
(N),m
t )}Mm=1 to obtain the empiri-

cal regression coefficients from the simulation of sizeM , α(M),·(t), and the approximate value function

V ∆(0, ~π;T,M,N, r,∆t).
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4.3. Stationary Solution

Returning to our original problem, general theory (Ludkovski 2009) implies thatV ∆(0, ~π;T,M,N, r,∆t)→

V asr → ∞, N → ∞, M → ∞, ∆t → 0, T → ∞. To obtain a stationary stopping rule on infinite hori-

zon, we (i) setπ̂0 ∼ Π̃T ′ |Θ > T ′ for T ′ large enough (this corresponds to a quasi-stationary distribution of

the filter conditional on no disorder yet; this distributioncan be sampled from by generating paths of(~Yt)

constrained toΘ > T ′ and filtering along them on[0, T ′]); (ii) solve the finite horizon problemV ∆(π̂0;T )

for T large using the MCDP algorithm; (iii) using the stopping region S0 and a fresh set of Monte Carlo

simulations, evaluate the performance of the resulting detection rule

V (~0) ≃ E~0

{

(τ̂ −Θ)+ + f(d∗, Z)
}

+ cP~0{τ̂ < Θ}, τ̂ := inf
{

t ≥ 0 : Π̂
(N)
t ∈ S0

}

.

Algorithm 2 summarizes the full procedure in pseudo-code.

4.4. Choice of Algorithm Parameters

The Bayesian detection rule is a map betweenΠ̃t and the stopping decision. This suggests that to obtain

good tests, it is first and foremost important to identify thekey features iñΠt. For example, the posterior

probability of no disorders,π(~0) directly drives the immediate payoffH2 and is certainly an important

quantity. In the MCDP method, this translates intoparametrizingcandidate tests in terms of the summary

statistics used. For instance, if we taker = 1, B1(t, π̃) = π̃({~Xt = ~0}), the resulting detection test consists

of declaring alarms based solely onP{Θ ≤ t|Ft}. In general, this cannot be optimal, since it would imply

ignoring the other information in(Π̃t) while the latter has no finite-dimensional Markovian representation.

(We remark that in the model of Raghavan and Veeravalli (2010), a similar one-dimensional detection rule

was shown to be asymptotically optimal.)

The choice of the basis functionsBi(π̃) and their numberr is heuristic. First, we expectr to be large

enough so that the resulting projection of the conditional expectation is well-approximated, which can be

empirically verified by varyingr and checking that the results remain stable. Second, while one could

automate the choice ofBi by selecting some functional family and picking the firstr terms, we observe that

practically speaking, customization to the given problem at hand is desirable in the sense of allowing smaller

r. For instance, it is recommended to include the terminal cost H2(t, Π̃t) as one of the basis functions.

Finally, we find that in practice the choice of the quantitiesN andM that control algorithm running time

can be done independently; namely first pick number of particlesN to achieve minimal filtering error; then

pick number of simulationsM large enough so that the Monte Carlo variance of the MCDP step(monitored
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through the regression coefficients~α(M)) is acceptably small. Note thatM is primarily determined byr

which in turn typically needs to grow (slowly) in the number of sensorsK.

5. RELATED MODELS

Our framework of applying stochastic filtering and optimal stopping techniques on quickest detection prob-

lems is highly flexible and can handle a variety of modified models. Below we briefly discuss several other

cases that fit into the general framework described in Section 3.1.

5.1. Further Examples of Signal/Observation Setups

Local Identification: Rather than identifying the global signal presence, it is often of interest to carry out

local detection for a particular changepointθk. The other sensors are then used as secondary information

sources and the performance measure is modified to, e.g.,

V1(π̃) := inf
τ∈S

Eπ̃

{∫ τ

0
1{X1

s=1} ds+ c1{X1
τ=0}

}

,

where now detection delay and false alarms are defined with respect toθ1 only. Solution of this problem

uses the identical method of Algorithms 1 and 2.

Signal Strength: As pointed out earlier, the observed arrival ratesΛ(~Xt; t, Z) may be a function of

the parametersZ. For instance, in physical systems with well-defined signalorigin, the signal strength

observed by each sensor would depend on the distance betweensignal originO and sensor locationAk. In

homogenous media, we might therefore model

Λk(Xk
t ; t, Z) = Λk(0) +

aXk
t

‖O −Ak‖2
.

Note that here the statistical profile after disorder, beinga function of unobservedO, is no longer exactly

known. Of course, such dependence would help to improve detection; a similar adaptive disorder problem

for a single change-point was studied in Ludkovski (2012).

A further possibility is time-variable signal strength. For instance, in biosurveillance(Y k
t ) corresponds

to count of infected cases at sitek; once an epidemic begins atθk, the ensuing infectivity rate is nonlinear

Λk
t = λk(0) + Λ((t− θk)+),

whereΛ is some specified known function (e.g. through a corresponding ODE). Such dependence between

Λ andZ is straightforwardly incorporated into the filtering Algorithm 1. Since each particle is already

equipped with its copyzn of Z, all that is required is appropriate adjustment of the weightswn(t) in (4.2).

16



Transient Signals: We could also consider problems with transient signals. Forinstance, in radar com-

munications the signal corresponds to a target moving through space. Given a radar detection radiusr, a

target affects observations at sensork at instantt only if ‖Dt − Ak‖ ≤ r, whereDt = O + Vt is the (for

simplicity 1-dim.) location of the target. Thus, each sensor is exposed to two disorder timesθk,1 andθk,2

with the statistical profile

Λk
t =











Λk(1) if θk,1 ≤ t < θk,2;

Λk(0) otherwise.

In this setup,(~Xt) can therefore transition both to “higher” and “lower” (in terms of number of disorders

present) states; the rest of Algorithm 1 remains the same. Clearly, temporary disorder makes detection more

difficult.

5.2. Dependence between Change-Points and Observations

The traditional Bayesian formulation treats the underlying change-pointsθk as conditionally independent

(given true signal parametersZ) of the observed(Y k
t ). However, this is not essential in our framework

which allows complex couplings between disorder state~Xt and observations(~Yt).

To illustrate the possibilities, we consider an interacting extension of the Markov model of Section 3.2

using a system of bivariate Hawkes processes for each sensork = 1, . . . ,K. We take(Y k
t ) to be a doubly

stochastic Poisson process with known pre- and post-disorder intensitiesΛk(0) andΛk(1) and arrivals(σk
ℓ ),

ℓ = 1, . . .. Thetransition rateµk(t) of (Xk
t ) now has a feedback effect from arrivals in~Y,

µk(t) = µk
0 +

∑

ℓ:σℓ≤t

ake−βk(t−σk
ℓ
), (5.1)

for some known constantsak ∈ R, βk ∈ R+, k = 1, 2, . . . ,K. Thus, the transition rate of(Xk
t ) increases

by ak after each arrivalσk
ℓ ; this effect dissipates exponentially at rateβk. It follows that if ak > 0 then the

change-pointθk is likely to be “triggered” by a cluster of observed events, correlating(~Yt) and(~Xt).

As a motivation, consider a biosurveillance setup where(Y k
t ) is the count of observed infections for an

endemic pathogen, andθk is the (unknown) instant when the disease goes epidemic. Recently, such models

have been proposed for understanding the spread of avian H5N1 flu in human populations (Bettencourt and

Ribeiro 2008). Currently, avian flu is only (rarely) transmitted from animals to humans; however each time

a human is infected, further virus adaptation may result, enabling direct human-to-human transmission and

causing widespread epidemic. This creates a positive feedback between observed infections(~Yt) and the

epidemic change-point withak > 0 in (5.1).

17



On a filtering level, dealing with (5.1) requires straightforward adjustments in the particle filtering Algo-

rithm 1. Evaluating the likelihood of observations(~Yt) conditional on~Xt remains elementary. Simulating

(~Xt) conditional on a trajectory of~Yt can be done in the case of (5.1) through a variant of the Poisson thin-

ning algorithm (Lewis and Shedler 1979). Namely, we equip each particle with a time-dependent intensity

functionµn,k(t) which is updated as new eventsσℓ arrive and in turn is used to simulate the particle-specific

disorder timeθn,k. Givenθn,k, the algorithm then proceeds as before to assign weightswn(t) and perform

resampling on the particle cloud. We note that with (5.1),(~Xt, Z) is no longer Markovian, but the tuple

(~Xt, ~Yt, ~µt) is Markov, since the dynamics of the current intensityµk(t) depend only on~Yt.

6. NUMERICAL EXAMPLES

6.1. Markovian Model

As a first example we consider a 2-sensor Markovian model,K = 2, which provides a semi-analytical

benchmark. The disorder indicator process(~Xt) takes values inE = {00, 01, 10, 11} and has the infinitesi-

mal generator

Q =

















−0.3 0.15 0.15 0

0 −0.5 0 0.5

0 0 −1 1

0 0 0 0

















, with P{~X0 = 00} = 1. (6.1)

For observations, we take a basic doubly stochastic Poissonmodel for(~Yt) with the intensities

~λ1 = (Λ1(j)) =





3

5



 and ~λ2 =





5

10



 , j = 0, 1. (6.2)

Thus, the fused statistical profile is summarized by

~Λ = (Λ(i))i∈E =

















8

13

10

15

















, ~p = (p(ν, i))ν∈{1,2},i∈E =

















3/8 5/8

3/13 10/13

5/10 5/10

5/15 10/15

















. (6.3)

The corresponding filter(~Πt) of (~Xt) is 3-dimensional. The following lemma, which is a direct applica-

tion of the results in Ludkovski and Sezer (2012), characterizes the evolution of(~Πt).
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Lemma 6.1. The posterior filter(~Πt) follows the piecewise-deterministic dynamics










~Πt = ~u(t− σk; ~Πσk
) for σk ≤ t < σk+1;

~Πσk+1
= Jνk+1

~Πσk+1−,
(6.4)

where the jump operatorJ is defined coordinate-wise by

(Jνπ)
i :=

πiλip(ν; i)
∑

j∈E πjλjp(ν; j)
, i ∈ E (6.5)

with λi =
∑K

k=1Λ
k(i) the arrival intensity in regimei ∈ E and the vector field~u given byui(t, π) =

ρi(t,π)∑
j∈E ρj(t,π)

, with ~ρ(t, π) = πet(Q−L) the unnormalized likelihood processes, andL = diag(λ1, . . . , λ4)

the diagonal matrix of all the state intensitiesλi’s.

We consider a simple Bayesian risk minimization problem

JB(τ ;~π0) = E~π0

{
∫ τ

0
[1−Π00

s ]ds+ cΠ00
τ

}

, (6.6)

whereΠ00
s = P{s < θ1 ∧ θ2|Fs} is the probability of no disorders observed yet and there is no mis-

identification penaltyf ≡ 0. Thus, the Bayesian risk minimization is equivalent to solving the three-

dimensional optimal stopping problemV (~π0) := infτ∈S JB(τ ;~π0). Using Lemma 6.1, we obtain that the

value functionV (~π), ~π ∈ ∆4 satisfies the variational inequality (in viscosity sense and subject to further

technical assumptions)

min
(

LV (~π) + c(1 − π00), π00 − V (~π)
)

= 0, (6.7)

where

LV (~π) :=
∑

i∈E





∑

j∈E

qjiπ
j − λiπi + πi

∑

j∈E

λjπj





∂V

∂πi
+

K
∑

ν=1

[

(V (Jν~π)− V (~π))
∑

i∈E

πiλip(ν, i)

]

.

Efficient numerical solution ofV is possible using the methods of Dayanik et al. (2008a), Ludkovski and

Sezer (2012) which rely on applying Lemma 3.1 and iteratively computingJ Vn using a two-step algorithm

consisting of deterministic optimization and interpolation.

Remark 6.1. Another semi-analytic special case corresponds to pure diffusion observations where(Y k
t )

are Brownian motions with drift driven by(~Xt). This is the observations setup in Raghavan and Veeravalli

(2010). Classical techniques (Bain and Crisan 2009, Ch 3) imply that in this case the filter(~Πt) satisfies

the Zakai equation of nonlinear filtering. The resulting value functionV (~π) can be again obtained via the

quasi-variational inequality (6.7) where now the generator L is a second-order elliptic differential operator.

At least forK = 2 these equations can be solved using standard pde methods.
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The left panel of Figure 3 shows a sample path of the inferenceproblem corresponding to (6.1)-(6.3).

Recall that Lemma 6.1 means that(~Πt) is piecewise-deterministic; in particular between events, the condi-

tional probability of no disorder rises (Π00
t increases) while at event timesσk the conditional probabilities

of disorders rise, with the precise amount contingent on theobserved markνk. We observe that while the

intensity of arrivals grows by nearly 60% once both sensors see the signal, there is considerable detection

delay and the signal is quite faint. In Figure 3 the filter reacts to the disorder at sensor 1 aroundt ≃ 3.4,

and to the disorder at sensor 2 aroundt ≃ 4.7 which confirms the presence of a signal and leads toΠ00
t ≃ 0

for t > 5. We note that between the two disordersθ1 ≤ t ≤ θ2 the filter only weakly detects the true state

~Xt = (1, 0) (~Π10
t never rises above 30%). Overall, this example illustrates the large degree of noise present

in a typical model and the complexity of the filtering problem.

Using the algorithm of Ludkovski and Sezer (2012) we proceedto solve for the resulting Bayes risk (6.6)

by a basic fixed-mesh discretization of the state space∆4 ∋ ~Πt and computing the value functionsVn(~π)

until ‖Vn − Vn−1‖∞ ≤ 10−4. The right panel of Figure 3 shows the resulting stopping region S for c = 10.

As expected, the decision maker stops onceΠ00
t is “low enough”. However, as a testament to the interaction

between the sensors, the optimal detection rule is not simply inf{t : Π00
t ≤ b} for some thresholdb, but

forms a nontrivial surface in the simplex∆4. In particular forΠ00
t ∈ [0.08, 0.11], the stopping decision is

determined by the other~Πt-coordinates.
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Figure 3: Left: Sample path of the observed arrivals(Y k
t ), k = 1, 2 (top) and corresponding

3-dimensional filter(~Πt) (bottom) obtained from Lemma 6.1. The true disorder datesθk

are indicated with stars and dashed vertical lines. Right: stopping regionS = {~π ∈ ∆4 :

V (~π) = H2(0, ~π)}.
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6.2. Wavefront Example

As our second example we take a one-dimensional wavefront model for Z = (O,T0,V). NamelyO ∈

[0, 2.5] with A1 = 1 andA2 = 2 and‖O−Ak‖ ≡ |O−Ak|. We assume independent marginal distributions

T0 ∼ Exp(0.3), O ∼ Unif(0, 2.5), V =











0.5 with prob.0.5;

1 with prob.0.5.
(6.8)

The left panel of Figure 4 shows a sample path of the resultingparticle filter(Π̂(N)
t ). From our numerical

experiments,N = 2000 produces a good approximation to the true disorder probabilities Πt; each path of

such(Π̂(N)
t )t∈[0,10], takes about half a second to generate.
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≤
t
|F

t
)

Sensor 1

Sensor 2

Figure 4: Left: Sample path of the observations(Y k
t ) (top) and corresponding posterior

probability of disorderP{Θ ≤ t|Ft} computed using(Π̂(N)
t ) with N = 2000. (bottom).

The true disorder datesθk are indicated with the dashed vertical lines. Right: detection rule

projected onto the simplex defined by the posterior probabilitiesΠt(1{i}) = P{~Xt = i|Ft},

i ∈ E. The shaded volume indicates the respective stopping region S.

We proceed to study the stopping rule for the pure Bayesian risk minimization problem (again without

classification objectives). We use∆t = 0.05, T = 8, M = 32, 000 andN = 2000 particles with the four

r = 4, basis functions

B1(π̃) = P{Θ ≤ t|Ft}, B2(π̃) = P{θ1 ≤ t|Ft},

B3(π̃) = P{θ2 ≤ t|Ft}, B4(π̃) = P{Θ ≤ t|Ft}
2.

Table 1 presents some summary results as we vary the cost of false alarmsc. We recall that in this case the

total Bayes risk can be decomposed into the probability of false alarm (PFA) and expected detection delay
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c V (~0) E~0{τ
∗} PFA EDD

5 1.79 5.05 0.064 1.48

10 2.09 5.51 0.036 1.73

20 2.36 5.86 0.015 2.06

Table 1: Solution of the Bayesian risk minimization problem (2.10) for a range of false

alarm costsc. We decompose the value function asV (~0) = E~0{(τ
∗ − θ)+} + cP~0{θ ≤

τ∗} =: EDD+ c · PFA.

(EDD). As expected, higherc reduces PFA and increases EDD, as well as the average time until first alarm.

For example forc = 10, the PFA is about 3.6% while the detection delay is 1.73 time units (corresponding

to about 20 arrivals after disorder). The right panel of Figure 4 shows the resulting stopping regionS for

c = 10 projected onto the 3-dim. simplex~Πt ∈ ∆4. Perhaps surprisingly, this region is much smaller

(i.e. detection rule is more conservative) than in the Markovian model above and only involves the corner

region around~Xt = (1, 1). However, we note that it is almost impossible to haveP{~Xt = (1, 0)|Ft} or

P{~Xt = (0, 1)|Ft} close to one, so in fact the corresponding corner regions arenever visited by the paths

of (Π̃t); thus they are also not explored during the MCDP step and the accuracy of the stopping rule is not

guaranteed to be high there. In other words, while the computed stopping rule is clearly not accurate around

P{~Xt = (1, 0)|Ft} ≃ 1, this has negligible effect on its Bayes risk or its (approximate) optimality. We

also remark that the exact stopping region is given in terms of the full Π̃t and the plot is therefore only a

projection of this infinite-dimensional object. Since the chosen basis functionsBi(π̃) live on∆4, Figure 4

does provide a faithful visualization of this approximation.

6.3. Detection and Identification with Multiple Sensors

Our final example explores the impact of deploying variable numbers of sensors for quickest detection and

also multi-objective Bayes risk. A signal arises atT0 from locationO according to the prior distribution in

(6.8). As the signal propagates, the background intensity at locationA rises fromΛk(0;Z) = 5 to a new

O-dependent intensity ofΛk(1;Z) = 5 + 10
1+|O−A|2 . The aim of the decision maker is to (i) detect the

local change-pointθ1 at locationA1 = 1 as soon as possible and (ii) identify the signal originO. For this

purpose, she can deployK = 1, 2, 4 sensors at further locationsA2 = 2, A3 = 0.5, A4 = 1.5. We use a

quadratic identification penaltyf(d, Z) = |d − O|2 for d ∈ [0, 2], which leads tod∗τ = E{O|Fτ}, so that
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c2 = 0 c2 = 10

K V (~0) EDD Var{O|Fτ∗} V (~0) EDD Var{O|Fτ∗}

1 1.18 0.90 0.310 3.51 1.36 0.192

2 0.79 0.76 0.064 1.42 0.85 0.054

4 0.65 0.39 0.038 1.02 0.44 0.032

Table 2:Solution of the Bayesian risk minimization problem withK sensors arranged in a

line. The value function is given by (6.9) withc1 = 5. Here EDD :=E~0{(τ
∗ − θ1)+}.

the full objective is

V (~0) = inf
τ∈S

(

E~0

{

(τ − θ1)+
}

+ c1P~0
{

τ < θ1
}

+ c2Var {O|Fτ}
)

. (6.9)

We solve (6.9) using our method withM = 24000 andN = 2000 and up tor = 11 basis functions

of the formP{θk ≤ t|Ft}, P{mink θ
k ≤ t|Ft} andVar{O|Ft}, as well as squares and pairwise products

of these posterior probabilities. Table 2 shows that the resulting minimal Bayes risk is highly sensitive

to the number of sensors employed. As expected, with more sensors, the detection delay decreases and

the posterior variance ofO shrinks by an order of magnitude when comparingK = 1 andK = 4. We

observe that the variable post-disorder intensity together with further sensors more than halves detection

delay compared to the previous example.

7. CONCLUSION

Above we have developed a stochastic model for quickest detection in sensor arrays. The key to our for-

mulation is a Bayesian point of view which translates change-point detection into a nonlinear filtering step

followed by an optimal stopping step. By approximating the full posterior distribution(Π̃t) to an arbitrarily

high precision, our method remains faithful to the true non-Markovian system dynamics. At the same time,

parametrizing the stopping tests using the basis functionsBi(π̃) corresponds to employing natural stopping

tests that can be easily understood by the policy maker.

Our approach lends itself to a robust numerical implementation that can be easily customized and ex-

tended. We focused on a common case where the disorders are triggered mechanistically due to gradual

signal propagation; as a result it is natural to carry the inference on the latent “primitive” system parameters.

For simplicity we used location and (radial) velocity as ourmain such parameters; in reality a large range

of other specifications (such as signal strength, etc.) could be considered. Perhaps the most interesting
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possibility is modeling the interaction between observations and change-points along the lines sketched in

Section 5.2. A more detailed analysis of this case will be presented in a separate forthcoming paper.
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Algorithm 2 Disorder Detection in Sensor Arrays

Input: M (number of paths);N (number of particles per path);∆t (time step for Snell envelope);Bi(Π̃)

(regression basis functions);r (number of basis functions)

for m = 1, 2, . . . ,M do

Simulate a trajectory(ymt ) of the observation process(~Yt) on [0, T ]

SampleN particles formingΠ̂(N),m
0 from the priorπ̃ of Z

Use the particle filter Algorithm 2 to computêΠ(N),m
t along the path(ymt ) for t = 0,∆t, . . . , T

Initialize vmT = H2(T, Π̂
(N),m
T ), andτmT = T

end for

for t = T −∆t, . . . ,∆t, 0 do

Evaluate the basis functionsBi(Π̂
(N),m
t ), for i = 1, . . . , r andm = 1, . . . ,M

Regress

~α(M)(t) , argmin
(α1,...,αr)∈Rr

M
∑

m=1

∣

∣

∣
vm(t+∆t)−

r
∑

i=1

αiBi(Π̂
(N),m
t )

∣

∣

∣

2

for m = 1, . . . ,M do

Seth1,m(t) = H1(t, Π̂
(N),m
t ) andh2,m(t, ) = H2(t, Π̂

(N),m
t )

Setqm(t) = h1,mt ∆t+
∑r

i=1 α
(M),i(t)Bi(Π̂

(N),m
t )

SetŜ(t) = {m : h2,m(t) < qm(t)} { Empirical Stopping Region}

Setvm(t) = qm(t)1{Ŝc(t)} + h2,m(t)1{Ŝ(t)}

Updateτmt = τmt+∆t1{Ŝc(t)} + t1{Ŝ(t)}

end for

end for

Generate an independent fresh set of simulations(ym
′

t ), m′ = 1, . . . ,M

Initialize with Π̂
(N),m′

0 = π̃ and find(Π̂(N),m′

t ) along each observation path using Algorithm 1

for m′ = 1, . . . ,M do

Compute empirical stopping timeτm
′

:= inf{t : ym
′

t ∈ Ŝ(0)}

Compute empirical stopping costvm
′

:=
∑τm

′

−1
j=1 h1,m

′

(j∆t) + h2,m(τm
′

)

Compute empirical detection announcementdm
′

end for

return V (π̃) ≃ 1
M

∑M
m′=1 v

m′

.
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