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Abstract

For i.i.d. univariate observations a new estimation method, the max-
imum spacing (MSP) method, was defined in Ranneby (1984) and inde-
pendently by Cheng and Amin (1983). The idea behind the method, as
described by Ranneby (1984), is to approximate the Kullback-Leibler infor-
mation so each contribution is bounded from above. In the present paper
the MSP-method is extended to multivariate observations. Since we do not
have any natural order relation in Rd when d > 1 the approach has to be
modified. Essentially, there are two different approaches, the geometric or
probabilistic counterpart to the univariate case. If we to each observation
attach its Dirichlet cell, the geometrical correspondence is obtained. The
probabilistic counterpart would be to use the nearest neighbor balls. This,
as the random variable, giving the probability for the nearest neighbor ball,
is distributed as the minimum of (n − 1) i.i.d. uniformly distributed vari-
ables on the interval (0, 1), regardless of the dimension d. Both approaches
are discussed in the present paper.

Key words and phrases: Estimation, spacings, consistency, multivariate
observations
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1 Introduction

For independently and identically distributed (i.i.d.) univariate observa-
tions, a new estimation method called the “Maximum Spacings (MSP)”
method, was developed in Ranneby (1984) and independently by Cheng
and Amin (1983). The idea behind the method, as described by Ranneby
(1984), is to approximate the Kullback-Leibler information so each contri-
bution is bounded from above. The estimation method obtained from this
approximation is called the maximum spacing method and it works also in
situations when the ML-method breaks down. The method is also discussed
in Titterington (1985), where he states that “in principle, of course, it would
be possible to treat multivariate data by grouping: although definition of
the multinomial cells would be more awkward.”

In the present paper our goal is to extend the MSP-method to multi-
variate observations. Since we do not have any natural order relation in
Rd when d > 1 , we have to modify the approach. Essentially, there are
two different approaches to choose between, namely the geometric and the
probabilistic counterparts to the univariate spacings. Let ξ1, ξ2, ..., ξn be a
sequence of independent and identically distributed d-dimensional random
vectors with true distribution P0 and define the nearest neighbor distance
to the point ξi, namely:

Rn(i) = min
j 6=i

|ξi − ξj |

and let
B(x, r) = {y : |x− y| ≤ r}

denote the ball of radius r with center at x.
The Dirichlet cells Vn(ξi) attached to each observation ξi may be in-

terpreted as the geometrical correspondence. The Dirichlet cell Vn(ξi) sur-
rounding ξi consists of all points x ∈ Rd which are closer to ξi than to
any other observation, and the Dirichlet cells split Rd into n identically
distributed random sets. The main advantage with this approach is that
the probabilities for the Dirichlet cells always add up to one. The Dirichlet
cells are cumbersome to handle, both from a practical and theoretical point
of view. The probabilistic counterpart to univariate spacings would be to
use the nearest neighbor balls, as the random variable P0(B(ξi, Rn(i)) is
distributed as the minimum of (n− 1) i.i.d. uniformly distributed variables
on the interval (0, 1), regardless of the dimension d. The latter approach is
our main focus in this paper, but the geometric approach is also discussed.
Goodness of fit tests based on nearest neighbor balls have been considered
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earlier by Bickel and Breiman (1983) as well as Jammalamadaka and Zhou
(1993) but our goal here is estimation and not testing hypotheses.

2 Definitions

In this section the definitions of the two different extensions of the MSP-
method to the multivariate case will be given.

2.1 MSP based on NN-balls

Let ξ1, ξ2, . . . , ξn be i.i.d. random vectors with an absolutely continuous
distribution P0 with density function g(x) and suppose that we assign a
model with density functions {f(x, θ), θ ∈ Θ}, where Θ ⊂ Rq. Define,

zi(n, θ) = nPθ(B(ξi, Rn(i))),

z̄(n, θ) =
1
n

n∑

i=1

zi(n, θ),

I(A) = indicator function of the set A.

A natural generalization of the univariate definition of the spacing func-
tion is to define it in multivariate case as

1
n

n∑

i=1

log zi(n, θ).

However, there are serious shortcomings of this approach, mainly that under
some probability measures the sum of the probabilities of the nearest neigh-
bor balls may be too large (as for instance when Pθ has the same location
as P0 but much smaller variance). As a consequence there is no guarantee
that the estimator will be consistent.

To overcome this problem, we will normalize the probabilities for the
nearest neighbor balls when the sum of their probabilities exceeds one. When
the sum is less than one it seems natural to let the remaining probability
enter the spacing function in the same way as the probabilities for the near-
est neighbor balls. This leads us to the following definition of the spacing
function Sn(θ).

Sn(θ) =
1
n

∑
log(zi(n, θ)) +

(
1
n

log(1− z̄(n, θ))
)

I(z̄(n, θ) ≤ 1)

−I(z̄(n, θ) > 1) log z̄(n, θ).
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Remark 1: This means that when the sum of the probabilities exceeds one
the spacing function is defined as

Sn(θ) =
1
n

∑

i

log

[
nPθ(B(ξi, Rn(i)))∑

j Pθ(B(ξj , Rn(j))

]
.

Definition: The parameter value which maximizes Sn(θ) is called the max-
imum spacing estimate (MSP-estimate) of θ.

Remark 2: If supSn(θ) is not attained for any θ belonging to the admissible
set Θ, we define the MSP-estimate θ̂n as any point belonging to the set Θ
and satisfying

Sn(θ̂n) ≥ log cn

n
+ sup

θ∈Θ
Sn(θ).

In this expression 0 < cn < 1 and cn → 1 as n →∞.
For mixtures of continuous distributions it happens that the likelihood

function tends to infinity for certain parameter combinations and then the
ML-method breaks down.

Example 1 Let ξ1, ξ2, . . . be i.i.d. observations from a mixture of two bi-
variate normal distributions. The density function f(x, y, θ) is given by

f(x, y, θ) = ph(x, y, µ1, µ2, σ1, σ2, ρ1) + (1− p)h(x, y, µ3, µ4, σ3, σ4, ρ2)

where h is the density function for a bivariate normal distribution with pa-
rameters indicated by the notation. Say that we have observations (x1, y1),
(x2, y2), . . . , (xn, yn). If we put µ1 = x1, µ2 = y1 and let σ1 (or σ2) go to zero,
then the likelihood function tends to infinity. Consequently, the ML-method
is not suitable. The maximum spacing estimate obtained by maximizing
Sn(θ), defined above will be consistent.

Remark 3: It may be argued that if the σi’s are bounded away from zero
by some small number the ML method performs well. Theoretically that
is true but quite frequently the numerical maximization breaks down, as a
consequence of the unboundedness of the likelihood function when the σi’s
are not bounded away from zero.

2.2 MSP based on Dirichlet tesselation

Before we give an alternative definition of the spacing function, consider the
following definitions.
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Given an open set Ω ⊂ Rd, the set {Vi}n
i=1 is called a tesselation of Ω if

Vi ∩ Vj = ® for i 6= j and ∪n
i=1V i = Ω. Let | · | denote the Euclidean norm

on Rd. Given a set of points {ξi}n
i=1 belonging to Ω, the Dirichlet cell V (ξi)

corresponding to the point ξi is defined by

V (ξi) = {y ∈ Ω : |y − ξi| ≤ |y − ξj |, forj = 1, . . . , n, j 6= i}.
The probabilities of the Dirichlet cells, of course, always add up to the
probability of Ω.

Now we consider the following alternative definition of the spacing func-
tion based on the Dirichlet tesselation. Let

vi(n, θ) = nPθ(V (ξi)).

The spacing function S∗n(θ) is defined as follows.

S∗n(θ) =
1
n

∑
log(vi(n, θ)).

The MSP-estimate of θ is now defined as the maximizer of S∗n(θ).
This approach has been used in Ranneby (1996) and it is also discussed

in Jimenez and Yukich (2002).

3 Consistency of MSP based on NN-balls

Before the main results will be stated some results of independent interest
will be given

3.1 Preliminaries

Let ξ1, ξ2, ..., ξn be a sequence of independent d-dimensional random vec-
tors. Then, for each fixed i , we can make the transformation P0(B(ξi, |ξi−
ξj |)), j 6= i . The (n−1) random variables are not only uniformly distributed,
but they are also mutually independent. As the following proposition shows,
it is also possible to let the random vectors ξ1, ξ2, . . . , ξn have different dis-
tributions.

Proposition 1 Let ξ1, ξ2, ..., ξn be independent random variables with the
respective distributions Pj(·), j = 1, 2, . . . , n which are absolutely continuous
w.r.t. Lebesgue measure. Then for each fixed i it holds that the random
variables Pj(B(ξi, |ξi− ξj |)), j 6= i, j = 1, 2, . . . , n have the same distribution
as the joint distribution of (n−1) independent and uniformly distributed (on
the interval (0, 1)) random variables.
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Proof:

Pr(Pj(B(ξi, |ξi − ξj |)) > αj , j 6= i)

=
∫

Pr(Pj(B(ξi, |ξi − ξj |)) > αj , j 6= i|ξi = x)dPi(x)

Given that ξi = x, the random variables Pj(B(x, |x− ξj |)) will be inde-
pendent. Thus we obtain

Pr(Pj(B(ξi, |ξi − ξj |)) > αj , j 6= i)

=
∫ ∏

j 6=i

Pr(Pj(B(x, |x− ξj |)) > αj)dPi(x)

=
∫ ∏

j 6=i

Pr(|ξj − x| > r(j, x, αj))dPi(x), (1)

where r(j, x, αj) is chosen so that Pj(|ξj − x| ≤ r(j, x, αj)) = αj .
Such numbers always exist because Pj(|ξj − x| ≤ β) is a continuous

function of β. The definition of r(j, x, αj) implies that

Pr(|ξj − x| > r(j, x, αj)) = 1− αj .

By inserting the right side of this expression into (1) we get

Pr(Pj(B(ξi, |ξi − ξj |)) > αj , j 6= i) =
∏

j 6=i

(1− αj),

which is what was to be proved.
Because of Proposition 1 the moments of n minj 6=iPj(B(ξi, |ξi− ξj |)) are

easily calculated, see e.g. Reiss (1989, p.45), giving us the following corollary.

Corollary 1 Under the assumptions in Proposition 1 it holds that

E[n min
j 6=i

Pj(B(ξi, |ξi − ξj |))] → 1,

V ar[n min
j 6=i

Pj(B(ξi, |ξi − ξj |))] → 1,

E

[
(n min

j 6=i
Pj(B(ξi, |ξi − ξj |)))3

]
→ 6.

As a direct consequence of results in Pyke (1965) or Rényi (1953) we
have the following lemma.
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Lemma 1 Under the assumptions in Proposition 1 it holds that the random
variable minj 6=i Pj(B(ξi, |ξi−ξj |)) has the same distribution as Y1/

∑n
j=1 Yj,

where Y1, Y2, . . . , Yn are i.i.d. random variables with an exponential distri-
bution with mean 1. Furthermore, n minj 6=i Pj(B(ξi, |ξi − ξj |)) converges in
distribution to an exponential distribution with mean 1.

Lemma 2 Under the assumptions of Proposition 1 it holds that

E[log nmin
j 6=i

Pj(B(ξi, |ξi − ξj |)))] → −γ,

where γ is Euler’s constant and equals 0.57 · · ·,

V ar[log n min
j 6=i

Pj(B(ξi, |ξi − ξj |))] → π2

6
− 1

and

E

[
| log n min

j 6=i
Pj(B(ξi, |ξi − ξj |))|3

]
→

∫
| log x|3e−xdx < ∞.

Proof: It follows from Lemma 1 that nminj 6=i Pj(B(ξi, |ξi − ξj |)) will have
the same distribution as Y1/Ȳ , where Ȳ → 1 almost surely. Thus we will
be done if we can show that the sequence | log Ȳ |3 is uniformly integrable.
Jensen’s inequality gives that log Ȳ ≥ 1

n

∑n
i=1 log Yi. Since we also have

log Ȳ ≤ Ȳ , we get

| log Ȳ | ≤
∣∣∣∣∣
1
n

n∑

i=1

log Yi

∣∣∣∣∣ + |Ȳ |.

This result shows us that | log Ȳ |3 is uniformly integrable. Since Ȳ → 1
a.s. we get that

E[log nY1/
∑

Yj ] → E(log Y1) = −γ,

V ar[log nY1/
∑

Yj ] → V ar(log Y1) =
π2

6
− 1,

and
E

[
| log nY1/

∑
Yj |3

]
→ E(| log Y1|3) < ∞.

The calculations of E(log Y1) and V ar(log Y1) may be found for example
in Darling (1953).

7



In the following we will assume that the random vectors ξ1, ξ2, . . . , ξn

have the same distribution P0 with density function g(x). In the rest of the
paper, we use the following notation (see also Section 4 of Jammalamadaka
and Janson (1986)):

‖B(x, r)‖ = volume of the ball B(x, r) = cdr
d,

where cd = πd/2/Γ(d/2 + 1).

Proposition 2 Let ξ1, ξ2, . . . , ξn be i.i.d. random vectors with an abso-
lutely continuous distribution P0 with density function g(x). Then (ξi, ηi(n)),
where

ηi(n) = n‖B(ξi, Rn(i))‖ = ncdR
d
n(i),

converges in distribution to (X,Y ) where X has density function g(x) and
Y given X = x has an exponential distribution with parameter g(x).

Proof: As the volume of the ball B(x, r) exceeds y/n if and only if none of the
variables ξj , j 6= i, j ≤ n falls in the ball B(x, V −1(y/n)). (Here V −1(y/n)
denotes the radius giving the volume y/n, i.e. r = (y/n)1/dc

−1/d
d ). Thus

Pr(n‖B(ξi, Rn(i)‖ > y|ξi = x) = (1− P0(ξ1 ∈ B(x, V −1(y/n))))n−1.

As
P0(ξ1 ∈ B(x, V −1(y/n))

y/n
→ g(x),

(see Mattila (1995, p.36)), it follows that

(1− P0(ξ1 ∈ B(x, V −1(y/n))))n−1 → e−yg(x).

Next we prove that (ξi, ηi(n)) and (ξj , ηj(n)) are asymptotically inde-
pendent.

Proposition 3 When n tends to infinity it holds that

Pr(ηi(n) > yi, ηj(n) > yj |ξi = xi, ξj = xj) → e−yig(xi)e−yjg(xj)

Proof: Since the random variables (ξi, ηi(n)), i = 1, 2, . . . , n are exchangeable
it is sufficient to prove the proposition for i = 1 and j = 2. Instead of proving
the convergence for η1(n) and η2(n) we shall prove it for η̃1(n) and η̃2(n),
where

η̃k(n) = min
j≥3

ncd|ξk − ξj |d for k = 1, 2.
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By symmetry η̃k(n) and ηk(n) differs only on a set having probability
1/(n− 1). Thus

η̃k(n)− ηk(n)
p−→ 0, k = 1, 2

which implies that (η1(n), η2(n) and η̃1(n), η̃2(n)) have the same limit dis-
tribution. By conditioning on ξ1 = x1 and ξ2 = x2 we get

Pr(η̃1(n) > y1, η̃2(n) > y2| ξ1 = x1, ξ2 = x2)
= Pr(E(x1, n) > y1, E(x2, n) > y2),

where
E(xi, n) = n‖B(xi, min

j≥3
|xi − ξj |)‖, i = 1, 2.

The event {E(xi, n) > yi} occurs if all ξj , j ≥ 3 falls outside the ball
B(xi, V

−1(yi/n)) = B(xi).
Thus

Pr(η̃1(n) > y1, η̃2(n) > y2| ξ1 = x1, ξ2 = x2) = (1− Pr(B(x1) ∪B(x2)))n−2.

But, as x1 6= x2, B(x1) and B(x2) are disjoint if n is sufficiently large so

lim
n→∞(1− Pr(B(x1) ∪B(x2)))n−2 = e−yig(xi)e−yjg(xj).

As the set {ξ1 = ξ2} has probability zero this gives us the asymptotic
independence of (ξi, ηi(n)) and (ξj , ηj(n)).

Proposition 4 Let the distribution P0 of the sequence ξ1, ξ2, . . . , ξn of in-
dependent random vectors be absolutely continuous w.r.t. Lebesgue measure.
Then it holds that

1
n

n∑

i=1

log nP0(B(ξi, Rn(i)))
p−→ −γ

as n tends to infinity.

Proof: Define
Ei(n) = nP0(B(ξi, Rn(i)).

The exchangeability of (ξi, ηi(n)) gives

E

[
1
n

n∑

i=1

log Ei(n)

]
= E(log E1(n)),
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and

V ar

[
1
n

n∑

i=1

log Ei(n)

]

=
V ar(log E1(n))

n
+ 2

n2 − n

n2
Cov(log E1(n), log E2(n)).

Since, see Lemma 2
E(log E1(n)) → −γ

and

V ar(log E1(n)) → π2

6
− 1 < ∞,

an application of Chebychev’s inequality will give the desired result if we
can show that Cov(log E1(n), log E2(n)) → 0 as n → ∞. Since E1(n) and
E2(n) are asymptotically independent we will be through if we show that
the sequence {log E1(n) log E2(n)}∞n=1 is uniformly integrable. We have

E2| log E1(n) log E2(n)|1.5 ≤ E| log E1(n)|3E| log E2(n)|3.

The right hand side of this expression converges to (
∫ | log x|3e−xdx)2,

which is finite, giving us

sup
n

E |log E1(n) log E2(n)|1+0.5 < ∞.

Consequently, the sequence {log E1(n) log E2(n)}∞n=1 has to be uniformly
integrable, which completes the proof.

Proposition 5 Let the distribution P0 of the sequence ξ1, ξ2, . . . , ξn of in-
dependent random vectors be absolutely continuous w.r.t. Lebesque measure.
Then it holds that

1
n

n∑

i=1

nP0(B(ξi, Rn(i)))
p−→ 1

as n tends to infinity.

Proof: Follows in a similar way from Corollary 1 and Proposition 3.
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3.2 Consistency

To prove the consistency of the MSP-estimate, we need some kind of con-
tinuity and identifiability condition. If we allow the distributions for pa-
rameter values close to each other to be too different, we cannot expect
our estimation procedure to produce consistent estimators. This is clearly
demonstrated by an example in Basu (1955). Our continuity condition is
inspired by the Arzela-Ascoli theorem.

Define

z(n, θ, x, y) = nB(x, rn) where rn = (c−1
d y/n)1/d,

P (x, y) = the distribution function of (X,Y )
with density function p(x, y) defined by

p(x, y) = g2(x) exp(−yg(x)), y > 0.

Condition C1: Let (X,Y ) have the distribution P (x, y). For each ε > 0
and η > 0 there exists an integer m, sets Kj ⊂ Rd+1, j = 1, 2, . . . ,m, a
partition of Θ into disjoint sets Θ1, Θ2, . . . , Θm and parameter values ψj ∈
Θj , j = 1, 2, . . . ,m, such that for each for each j = 1, 2, . . . , m,

(i) the boundary ∂Kj of the set Kj has Lebesgue measure zero;

(ii) P ((X, Y ) ∈ Kj) > 1− η;

(iii) supθ∈Θj
|z(n, θ, x, y)− z(n, ψj , x, y)| < ε for all (x, y) ∈ Kj and for all

n ≥ N(ε, η).

Remark 4: All or some of the sets K1,K2, . . . , Km may be equal.
The mixture distribution in Example 1 satisfies Condition C1. The tech-

nique used in Ranneby (1984) to verify Condition C1 is also applicable in the
multivariate situations. It follows that the continuity condition C1 usually
is satisfied.

The identifiability condition we are going to use is called, according to the
terminology in Rao (1973), a strong identifiability condition. However, when
weak identifiability conditions are used, these conditions are usually used
in combination with other conditions implying that a strong identifiability
condition is satisfied.

Let T (M, θ) denote the expected value of max(−M, log Y fθ(X)), where
(X, Y ) has the distribution P (x, y).
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Condition C2: For each δ > 0 there exists a constant M1 = M1(δ) such
that

sup
θ∈Bc(θo,δ)

T (M1, θ) < T (θo) = E(log Y g(X)).

Remark 5: Using the results in Corrolary 2.5 in Ranneby (1984) it is easily
seen that the identifiability condition C2 is satisfied if the density functions
fθ(x) are continuous functions of θ for almost all x and the weak identifia-
bility condition are satisfied.

Theorem 1 Let ξ1, ξ2, . . . , ξn be a sequence of i.i.d. random vectors in Rd

with distribution Pθ and density function fθ(x), where θ belongs to an ad-
missible set Θ. Suppose that Conditions C1 and C2 are satisfied. Then the
MSP-estimate θ̂n converges in probability to the true parameter value θo.

Before we prove the theorem we establish two lemmas and introduce
some notations. Let

tM (x) = max(−M, log x),
hM,N (x) = min(N, tM (x)),

aN (x) = max(0, log x−N),

Hn(M, N, θ) =
1
n

n∑

i=1

hM,N (zi(n, θ)),

T (M, θ) =
∫

tM (yfθ(x))dP (x, y),

H(M, N, θ) =
∫

hM,N (yfθ(x))dP (x, y),

A(N, θ) =
∫

aN (yfθ(x))dP (x, y).

Lemma 3 Hn(M, N, θ) converges in probability to H(M, N, θ). Further if
Condition C1 is satisfied then the convergence is uniform in θ.

Proof: We begin with the pointwise convergence of Hn(M, N, θ). The ran-
dom variables zi(n, θ) are exchangeable. Thus

E(Hn(M, N, θ)) = E(hM,N (zi(n, θ)))

and

V ar(Hn(M, N, θ)) =
1
n2

V ar(hM,N (z1(n, θ)))

+
n2 − n

n2
Cov(hM,N (z1(n, θ)), hM,N (z2(n, θ))).
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Next we show the convergence of

E[hM,N (z1(n, θ))] =
∫

hM,N (z(n, θ, x, y))dPn(x, y),

where Pn denotes the distribution of (ξi, ηi(n)) .
As hM,N is a bounded continuous function and since

z(n, θ, x, y) → yfθ(x), n →∞
and

Pn(x, y) → P (x, y), n →∞,

it follows from Lebesgue Dominated Convergence Theorem that

E(hM,N (zi(n, θ))) →
∫

hM,N (yfθ(x))dP (x, y) = H(M,N, θ).

As (ξ1, η1(n)) and (ξ2, η2(n)) are asymptotically independent, see Propo-
sition 3, it follows that

E(hM,N (zi(n, θ))hM,N (z2(n, θ))) → H(M,N, θ)2,

so that

Cov(hM,N (zi(n, θ)), hM,N (z2(n, θ))) → 0 as n →∞.

Thus
E(Hn(M, N, θ)) → H(M,N, θ),

and
V ar(Hn(M,N, θ)) → 0

implying that Hn(M,N, θ) converges in probability to H(M,N, θ) as n →
∞.

Now we continue with the uniform convergence of Hn(M, N, θ).
Choose the sets Kj in Condition C1 such that P (Kj) > 1− ε

16max(M,N) .
Furthermore, choose Θ1, Θ2, . . . ,Θm and ψ1, ψ2, . . . , ψm such that

sup
θ∈Θj

|z(n, θ, x, y)− z(n, ψj , x, y)| < εe−M

8
,

for all (x, y) ∈ Kj , j = 1, 2, . . . ,m. Write for θ ∈ Θj ,

H(M, N, θ)

= lim
n→∞

∫

Kj

hM,N (z(n, θ, x, y))dP (x, y) + lim
n→∞

∫

Kc
j

z(n, θ, x, y)dP (x, y).
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Let θ ∈ Θj . We have, for n sufficiently large,

|hM,N (z(n, θ, x, y))− hM,N (z(n, ψj , x, y))| ≤
{

ε/8 on Kj ,
2max(M, N) on Kc

j .
(2)

Thus
sup
θ∈Θj

|H(M,N, θ)−H(M,N, ψj)| < ε

8
+

ε

8
=

ε

4
. (3)

We have

|Hn(M,N, θ)−Hn(M,N,ψj)|
<

1
n

∑
|hM,N (zi(n, θ))− hM,N (zi(n, ψj)|I(ξi, ηi(n) ∈ Kj)

+
1
n

∑
|hM,N (zi(n, θ))− hM,N (zi(n, ψj)|I(ξi, ηi(n) ∈ Kc

j ).

Since the boundary ∂Kj has P -measure zero we get

1
n

∑
I((ξi, ηi(n)) ∈ Kc

j ) →p P ((X, Y ) ∈ Kc
j ) <

ε

16 max(M,N)

and then it follows from (2) that

P (|Hn(M,N, θ)−Hn(M,N,ψj)| < ε

4
) → 1 as n →∞. (4)

Combining (3) and (4) we get that

Hn(M, N, θ)
p−→ H(M, N, θ)

uniformly in θ.

Lemma 4 Define

z̃i(n, θ) =
{

zi(n, θ) if z̄(n, θ) ≤ 1,
zi(n, θ)/z̄(n, θ) if z̄(n, θ) > 1.

Then the random function

An(N, θ) =
1
n

n∑

i=1

max(0, log z̃i(n, θ)−N)

converges to zero for all elementary events, uniformly in n and θ as N →∞.
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Proof: Obviously,
∑

z̃i(n, θ) ≤ n. The rest of the proof is only a slight
modification of Lemma 2 in Ranneby and Ekström (1997).

Proof of Theorem 1: Recall the definition of Sn(θ) as

Sn(θ) =
1
n

∑
log zi(n, θ)

+
1
n

log(1− z̄(n, θ))I(z̄(n, θ) ≤ 1)− log z̄(n, θ)I(z̄(n, θ) > 1).

We have

Sn(θ) ≤ 1
n

∑
log zi(n, θ)− log z̄(n, θ)I(z̄(n, θ) > 1)

≤ 1
n

∑
hM,N (z̃i(n, θ)) +

1
n

∑
max(0, log z̃i(n, θ)−N).

Obviously,
∑

z̃i(n, θ) ≤ n, so Lemma 4 gives that

An(N, θ)
p−→ 0,

uniformly in θ and n. As z̃i(n, θ) ≤ zi(n, θ) and hM,N (x) is a non-decreasing
function we get that

Sn(θ) ≤ Hn(M,N, θ) + An(N, θ).

Lemma 3 gives that Hn(M, N, θ)
p−→ H(M, N, θ), uniformly in θ as

n →∞. Note that

H(M, N, θ) + A(N, θ) = T (M, θ),

and let θ̂n denote the MSP-estimate. For N large the following holds with
probability going to one as n tends to infinity:

Sn(θ̂n) ≤ 1
n

∑
hM,N (zi(n, θ̂n) +

ε

4
≤ H(M, N, θ̂n) +

ε

2
≤ H(M, N, θ̂n) + A(N, θ̂n) +

ε

2
= T (M, θ̂n) +

ε

2
.

As Sn(θo)
p−→ −γ we get

T (M, θ̂n) +
ε

2
> Sn(θ̂n) > Sn(θo) > T (θo)− ε

2
,
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which implies that
T (M, θ̂n) > T (θo)− ε.

Now the identifiability condition C2 gives

|θ̂n − θo| < δ

which completes the proof.

4 Simulation results

Here we present the results of the simulation study we conducted in order to
confirm and support our hypothesis about the consistency and asymptotic
normality of the MSP-estimates for multivariate observations. It was also of
interest to compare the estimation based on Dirichlet tesselation with that
based on nearest-neighbor balls. In all the figures and tables, MSPE stands
for MSP-estimate.

4.1 Gaussian density

We simulated bivariate Gaussian random variables with the following mean
vector and covariance matrix:

µ =
(

µ1

µ2

)
=

(
0
0

)
, Γ =

(
σ2

1 ρ
ρ σ2

2

)
=

(
1 0.5

0.5 1

)
.

Then we constructed two spacing functions - one based on nearest neighbor
balls and one based on Dirichlet cells. These functions were subsequently
maximized by random search algorithm. As the starting point in the pa-
rameter space, to speed up the convergence, the true value of the param-
eter vector was chosen. We have also experimented with different starting
points, and always the outcomes (e.g. the maximizers) were identical. Each
spacing function was maximized twice - first based on 50, then on 200 ob-
servations, and both experiments were repeated 500 times. The mean and
the covariance matrix of the outcomes were calculated and averaged over
500 repetitions (see Tables 1 and 2). The estimated covariance matrix was
compared to the Cramér-Rao bound:

I−1 =




1 0.5 0 0 0
0.5 1 0 0 0
0 0 0.5 0.125 0.5
0 0 0.125 0.5 0.5
0 0 0.5 0.5 1.25




.
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Figure 1: Quantile-quantile plots of the MSPE for σ2 (Gaussian density)

The results confirm the consistency of the MSP estimates. Besides, we
note that the MSP-estimate based on Dirichlet cells is much closer to being
efficient than the estimate based on the nearest neighbor balls. Figure 1
displays the normal quantile-quantile plots of the estimates of one of the
parameters. We note that the plots support the conjecture of asymptotic
normality of the MSP-estimates.

4.2 Mixture of two Gaussian densities

The second simulation was performed for the mixture of two bivariate Gaus-
sian densities. This is a well-known example, where the ML-method breaks
down. Particularly, if we set the mean of the first (say) component of the
mixture equal to one of the observations, e.g. µ1 = x1, µ2 = y1 then the ML-
function will tend to infinity as σ1 goes to zero. We simulated the bivariate
observations with the following density:

g(x, y, θ) = 0.8× f1(x, y, µ1, µ2, σ1, σ2, ρ1) + 0.2× f2(x, y, µ3, µ4, σ3, σ4, ρ2),

where µ1 = µ2 = 0, σ1 = σ2 = 1, ρ1 = 0.5, µ3 = µ4 = 2, σ3 = σ4 = 2 and
ρ2 = 0. Only the parameters of f1 were considered unknown. We constructed
the spacing functions for 50 and 200 observations. Each experiment was
again repeated 500 times as in the previous example. The results can be
seen in Tables 3 and 4. The estimated covariance matrix was again compared
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Figure 2: Quantile-quantile plots of the MSPE for µ1 (Gaussian mixture)

to the Cramér-Rao bound:

I−1 =




1.53 0.78 0.19 0.10 0.26
0.78 1.53 0.10 0.19 0.26
0.19 0.10 0.87 0.23 0.87
0.10 0.19 0.23 0.87 0.87
0.26 0.26 0.87 0.87 2.15




.

Although, as we have noted, this case is more complicated than the
previous one, the results of the simulation are very satisfactory. Apparently,
the MSP-estimate based on Dirichlet cells seems consistent, with variance,
approaching, and sometimes surpassing, the Cramér-Rao bound. It is also
asymptotically normal, similarly to the Gaussian case (Figure 2).

5 Discussion

In the present paper we have proved consistency for multivariate MSP-
estimates based on NN-balls. Using results from Jimenez and Yukich (2002)
it is possible to prove consistency also for the version based on Dirichlet cells.
For the univariate version of the MSP-method the estimators are normally
distributed and asymptotically efficient. Results from our simulation study
indicate that the estimators based on both versions are asymptotically nor-
mally distributed but that the variances for the NN-version are much larger
than the Cramér-Rao bound. For both versions proofs of asymptotic nor-
mality are still missing. However, results in a recent paper by Baryshinikov
and Yukich may be used to prove asymptotic normality for the NN-version.
As mentioned in Ranneby (1984), for univariate MSP-estimates it is possi-
ble to check the validity of the model at the same time as the estimation
problem is solved, see also Cheng and Stephens (1989) and Cheng and Tray-
lor (1995). The results from Baryshinikov and Yukich (2003) can be used
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to give confidence limits for Sn(θ0). Thus for multivariate MSP-estimates
based on NN-balls it is possible to check the validity of the model. Another
advantage with the NN-version is that it is much easier to handle, especially
in higher dimensions. The drawback is of course the lack of efficiency. In sit-
uations where the maximum likelihood method fails that is usually because
of global reasons. Locally the method may still give satisfactory results.
To be specific for mixture distributions it should be possible to use the ML
method if the starting values for the maximization are in the neighborhood
of the true values. Thus in these situations it should be possible to use the
MSP-method based on NN-balls to get consistent estimators which can be
used as starting values for the ML estimation.
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Table 1: The covariance matrix (×n) of the MSPE of the parameters of
Gaussian distribution

n Nearest neighbor circles

50

µ1 µ2 σ1 σ2 ρ

µ1 1.20 0.66 -0.07 -0.02 -0.09
µ2 0.66 1.31 0.05 0.07 0.06
σ1 -0.07 0.05 0.88 0.26 0.82
σ2 -0.02 0.07 0.26 0.79 0.74
ρ -0.09 0.06 0.82 0.74 1.88

200

µ1 µ2 σ1 σ2 ρ

µ1 1.29 0.65 -0.06 -0.05 -0.13
µ2 0.65 1.35 -0.05 0.03 -0.08
σ1 -0.06 -0.05 0.79 0.33 0.80
σ2 -0.05 0.03 0.33 0.90 0.89
ρ -0.13 -0.08 0.80 0.89 2.05

n Dirichlet cells

50

µ1 µ2 σ1 σ2 ρ

µ1 1.04 0.56 -0.08 -0.02 -0.07
µ2 0.56 1.07 0.02 0.01 0.04
σ1 -0.08 0.02 0.56 0.17 0.54
σ2 -0.02 0.01 0.17 0.54 0.59
ρ -0.07 0.04 0.54 0.59 1.51

200

µ1 µ2 σ1 σ2 ρ

µ1 1.10 0.55 -0.07 -0.04 -0.06
µ2 0.55 1.05 -0.03 0.03 0.00
σ1 -0.07 -0.03 0.53 0.18 0.55
σ2 -0.04 0.03 0.18 0.53 0.57
ρ -0.06 0.00 0.55 0.57 1.36

Table 2: The bias of the MSPE of the parameters of Gaussian distribution

µ1 µ2 σ1 σ2 ρ
NN circles (n = 50) -0.0060 0.0107 0.0025 0.0140 0.0307

Dirichlet cells (n = 50) -0.0091 0.0064 0.0518 0.0598 0.0116
NN circles (n = 200) -0.0010 -0.0003 0.0032 0.0019 0.0101

Dirichlet cells (n = 200) -0.0041 -0.0004 0.0244 0.0221 0.0034
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Table 3: The covariance matrix (×n) of the MSPE of the parameters of
Gaussian mixture

n Nearest neighbor circles

50

µ1 µ2 σ1 σ2 ρ

µ1 2.61 1.11 0.39 0.04 0.49
µ2 1.11 1.72 0.16 0.12 0.25
σ1 0.39 0.16 1.02 0.22 1.02
σ2 0.04 0.12 0.22 1.14 1.04
ρ 0.49 0.25 1.02 1.04 2.53

200

µ1 µ2 σ1 σ2 ρ

µ1 2.50 1.16 0.41 0.06 0.51
µ2 1.16 1.99 0.14 0.10 0.22
σ1 0.41 0.14 1.12 0.26 0.84
σ2 0.06 0.10 0.26 1.12 0.87
ρ 0.51 0.22 0.84 0.87 2.71

n Dirichlet cells

50

µ1 µ2 σ1 σ2 ρ

µ1 1.96 0.86 0.25 -0.09 0.24
µ2 0.86 1.59 0.16 0.16 0.32
σ1 0.25 0.16 1.04 0.27 0.95
σ2 -0.09 0.16 0.27 1.10 0.89
ρ 0.24 0.32 0.95 0.89 2.43

200

µ1 µ2 σ1 σ2 ρ

µ1 1.61 0.88 0.20 0.03 0.25
µ2 0.88 1.69 0.06 0.11 0.13
σ1 0.20 0.06 0.91 0.19 0.82
σ2 0.03 0.11 0.19 0.87 0.80
ρ 0.25 0.13 0.82 0.80 2.10

Table 4: The bias of the MSPE of the parameters of Gaussian mixture

µ1 µ2 σ1 σ2 ρ
NN circles (n = 50) 0.0060 -0.0044 -0.0313 -0.0287 0.0057

Dirichlet cells (n = 50) -0.0051 -0.0416 0.0198 0.0391 0.0125
NN circles (n = 200) 0.0021 -0.0009 0.0191 0.0302 0.0025

Dirichlet cells (n = 200) -0.0055 -0.0017 0.0179 0.0124 0.0096
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