Publications in reversed chronological order.

© All material accessible through this page is copyrighted by JŠnos Englšnder and his coauthors and by the corresponding publishers. Permission is granted for fair use in personal, noncommercial, and academic projects.




In print/accepted:

(Follow link to journal to access paper)

Englšnder, JŠnos; The center of mass for spatial branching processes and an application for self-interaction, Electronic Communications in Probability, to appear  PDF

Englšnder, JŠnos; Harris, Simon C; Kyprianou, Andreas E., Strong Law of Large Numbers for branching diffusionsAnn. Inst. H. Poincarť Probab. Statist., to appear   PDF

Englšnder, JŠnos Branching diffusions, superdiffusions and random media -- University of Bath lecture notes,  Probab. Surveys Vol. 4 (2007) 303-364. (Invited)

Englšnder, JŠnos Law of large numbers for superdiffusions: the non-ergodic case,  Ann. Inst. H. Poincarť Probab. Statist.,   45(2009), no. 1, 1Ė6  PDF

Englšnder, JŠnos; Pinsky, Ross G. Uniqueness/nonuniqueness for nonnegative solutions of a class of second-order parabolic equations. Equadiff 11 - CD (Proceedings of  Equadiff 11); electronically published  here

Englšnder, JŠnos Quenched Law of Large  numbers for Branching Brownian motion in a random medium. 
Ann. Inst. H. Poincarť Probab. Statist.
,   44(2008), no. 3,  490-518.       PDF

Englšnder, JŠnos; Pinsky, Ross G. The compact support property for measure-valued processes. 
Ann. Inst. H. Poincarť Probab. Statist. 42 (2006), no. 5, 535--552.

Englšnder, JŠnos; Winter, Anita Law of large numbers for a class of superdiffusions. 
Ann. Inst. H. Poincarť Probab. Statist. 42 (2006), no. 2, 171--185.

Englšnder, JŠnos; Simon, Pťter L. Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one. Electron. J. Differential Equations 2006, no. 9, 6 pp. (electronic).

Englšnder, JŠnos An example and a conjecture concerning scaling limits of superdiffusions. 
Statist. Probab. Lett. 66 (2004), no. 3, 363--368.

Englšnder, JŠnos Large deviations for the growth rate of the support of supercritical super-Brownian motion. 
Statist. Probab. Lett. 66 (2004), no. 4, 449--456.

Englšnder, JŠnos; Kyprianou, Andreas E. Local extinction versus local exponential growth for spatial branching processes. 
Ann. Probab. 32 (2004), no. 1A, 78--99.

Englšnder, J.; den Hollander, F. Survival asymptotics for branching Brownian motion in a Poissonian trap field. 
Markov Process. Related Fields 9 (2003), no. 3, 363--389.

Englšnder, JŠnos; Pinsky, Ross G. Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form $u\sb t=Lu+Vu-\gamma u\sp p$ in $\bold R\sp n$. 
J. Differential Equations 192 (2003), no. 2, 396--428.

Englšnder, JŠnos; Turaev, Dmitry A scaling limit theorem for a class of superdiffusions. 
Ann. Probab. 30 (2002), no. 2, 683--722.

Englšnder, JŠnos Criteria for the existence of positive solutions to the equation $\rho(x)\Delta u=u\sp 2$ in $R\sp d$ for all $d\ge1$---a new probabilistic approach. 
4 (2000), no. 4, 327--337.

Englšnder, JŠnos On the volume of the supercritical super-Brownian sausage conditioned on survival. 
Stochastic Process. Appl. 88 (2000), no. 2, 225--243.

Englšnder, JŠnos; Fleischmann, Klaus Extinction properties of super-Brownian motions with additional spatially dependent mass production. 
Stochastic Process. Appl. 88 (2000), no. 1, 37--58.

Englšnder, JŠnos; Pinsky, Ross G. On the construction and support properties of measure-valued diffusions on $D\subseteqR\sp d$ with spatially dependent branching. 
Ann. Probab.
27 (1999), no. 2, 684--730.

ŃdŠm, A.; Magyar, ZoltŠn; SzŠntů, Ń; Englšnder, JŠnos; Book reviews. 
Period. Math. Hungar. 33 (1996), no. 1, 69--72.

Englšnder, JŠnos; Pinsky, Ross G. The asymptotic behavior of the principal eigenvalue for small perturbations of critical one-dimensional SchrŲdinger operators with $V(x)=l\sb Ī/x\sp 2$ for $Īx\gg 1$. 
J. Funct. Anal. 133 (1995), no. 2, 501--515.

Englšnder, J.; Szťkely, J. G. On the arithmetic of independent discrete distributions. 
Ann. Univ. Sci. Budapest. EŲtvŲs Sect. Math. 36 (1993), 5--8.


Englšnder, J., Problems in the Theory of Semilinear PDE's and their Connection to Probability, Submitted to AIMS Proceedings   PDF
Englšnder, J., A  general construction of superprocesses,  In preparation  abstract


Englšnder, J.; A probabilistic investigation of the Martin boundary for certain elliptic operators in a strip, Technion-IIT, MSc Thesis

Englšnder, J.; and . Kyprianou, A. E., Markov branching diffusions: martingales, Girsanov-type theorems and applications to the long term behaviour, Preprint 1206, Department of Mathematics, Utrecht University, 2001, 39 pages. Available electronically at

Last updated on:   April 10,  2009